Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jun;148(3):381–387. doi: 10.1042/bj1480381

Early ribonucleic acid synthesis during the germination of rye (Secale cereale) embryos and the relationship to early protein synthesis.

S Sen, P I Payne, D J Osborne
PMCID: PMC1165555  PMID: 1200984

Abstract

Incorporation studies with radioactive precursors showed that synthesis of protein and RNA is initiated in germinating embryos of rye within the first hour of imbibition of water. By polyacrylamide-gel fractionations of radioactive nucleic acid components, the appearance of products of transcription of the genome was shown to follow the sequence: heterogeneous (ribonuclease-sensitive) RNA, 4S and 5S RNA by 20min, 31S and 25S rRNA by 40min, and 18S RNA by 60min. "Fingerprint' analysis of T1-ribonuclease digests show that all the large oligonucleotides present in 25S and 18S RNA are present in the 31S species, indicating that 31S RNA is the precursor rRNA molecule to both 25S and 18S RNA. The importance of these early RNA syntheses and in particular the possible template function of the heterogeneous RNA is discussed in relation to the concept of long-lived mRNA and the coding for protein synthesis in the first hours of germination.

Full text

PDF
381

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker G. R., Hollinshead J. A. Nucleotide metabolism in germinating seeds. The ribonucleic acid of Pisum arvense. Biochem J. 1964 Oct;93(1):78–83. doi: 10.1042/bj0930078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brownlee G. G., Cartwright E. Sequence studies on precursor 16S ribosomal RNA of Escherichia coli. Nat New Biol. 1971 Jul 14;232(28):50–52. doi: 10.1038/newbio232050a0. [DOI] [PubMed] [Google Scholar]
  3. Chen D., Sarid S., Katchalski E. Studies on the nature of messenger RNA in germinating wheat embryos. Proc Natl Acad Sci U S A. 1968 Jul;60(3):902–909. doi: 10.1073/pnas.60.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen D., Schultz G., Katchalski E. Early ribosomal RNA transcription and appearance of cytoplasmic ribosomes during germination of the wheat embryo. Nat New Biol. 1971 May 19;231(20):69–72. doi: 10.1038/newbio231069a0. [DOI] [PubMed] [Google Scholar]
  5. Cox B. J., Turnock G. Synthesis and processing of ribosomal RNA in cultured plant cells. Eur J Biochem. 1973 Aug 17;37(2):367–376. doi: 10.1111/j.1432-1033.1973.tb02996.x. [DOI] [PubMed] [Google Scholar]
  6. DURE L., WATERS L. LONG-LIVED MESSENGER RNA: EVIDENCE FROM COTTON SEED GERMINATION. Science. 1965 Jan 22;147(3656):410–412. doi: 10.1126/science.147.3656.410. [DOI] [PubMed] [Google Scholar]
  7. Dobrzanska M., Tomaszewski M., Grzelczak Z., Rejman E., Buchowicz J. Cascade activation of genome transcription in wheat. Nature. 1973 Aug 24;244(5417):507–509. doi: 10.1038/244507a0. [DOI] [PubMed] [Google Scholar]
  8. Grierson D., Loening U. E. Distinct transcription products of ribosomal genes in two different tissues. Nat New Biol. 1972 Jan 19;235(55):80–82. doi: 10.1038/newbio235080a0. [DOI] [PubMed] [Google Scholar]
  9. Griffin B. E. Separation of 32P-labelled ribonucleic acid components. The use of polyethylenimine-cellulose (TLC) as a second dimension in separating oligoribonucleotides of '4.5 S' and 5 S from E. coli. FEBS Lett. 1971 Jun 24;15(3):165–168. doi: 10.1016/0014-5793(71)80304-6. [DOI] [PubMed] [Google Scholar]
  10. JOHNSTON F. B., STERN H. Mass isolation of viable wheat embryos. Nature. 1957 Jan 19;179(4551):160–161. doi: 10.1038/179160b0. [DOI] [PubMed] [Google Scholar]
  11. Leaver C. J., Key J. L. Ribosomal RNA synthesis in plants. J Mol Biol. 1970 May 14;49(3):671–680. doi: 10.1016/0022-2836(70)90290-1. [DOI] [PubMed] [Google Scholar]
  12. Loening U. E. The determination of the molecular weight of ribonucleic acid by polyacrylamide-gel electrophresis. The effects of changes in conformation. Biochem J. 1969 Jun;113(1):131–138. doi: 10.1042/bj1130131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marcus A., Feeley J. ACTIVATION OF PROTEIN SYNTHESIS IN THE IMBIBITION PHASE OF SEED GERMINATION. Proc Natl Acad Sci U S A. 1964 Jun;51(6):1075–1079. doi: 10.1073/pnas.51.6.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marcus A., Feeley J. Ribosome activation and polysome formation in vitro: requirement for ATP. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1770–1777. doi: 10.1073/pnas.56.6.1770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marcus A., Feeley J., Volcani T. Protein Synthesis in Imbibed Seeds III. Kinetics of Amino Acid Incorporation Ribosome Activation, and Polysome Formation. Plant Physiol. 1966 Sep;41(7):1167–1172. doi: 10.1104/pp.41.7.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miassod R., Cecchini J. P., de Lares L. B., Ricard J. Maturation of ribosomal RNA's in suspensions of higher plant cells a DNA-RNA hybridization study. FEBS Lett. 1973 Sep 1;35(1000):71–75. doi: 10.1016/0014-5793(73)80579-4. [DOI] [PubMed] [Google Scholar]
  18. Parish J. H., Kirby K. S. Reagents which reduce interactions between ribosomal RNA and rapidly labelled RNA from rat liver. Biochim Biophys Acta. 1966 Dec 21;129(3):554–562. doi: 10.1016/0005-2787(66)90070-0. [DOI] [PubMed] [Google Scholar]
  19. Payne P. I., Corry M. J., Dyer T. A. Nucleotide sequence analysis of the cytoplasmic 5S ribosomal ribonucleic acid from five species of flowering plants. Biochem J. 1973 Dec;135(4):845–851. doi: 10.1042/bj1350845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts B. E., Payne P. I., Osborne D. J. Protein synthesis and the viability of rye grains. Loss of activity of protein-synthesizing systems in vitro associated with a loss of viability. Biochem J. 1973 Feb;131(2):275–286. doi: 10.1042/bj1310275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rogers M. E., Loening U. E., Fraser R. S. Ribosomal RNA precursors in plants. J Mol Biol. 1970 May 14;49(3):681–692. doi: 10.1016/0022-2836(70)90291-3. [DOI] [PubMed] [Google Scholar]
  22. Schultz G. A., Chen D., Katchalski E. Localization of a messenger RNA in a ribosomal fraction from ungerminated wheat embryos. J Mol Biol. 1972 May 28;66(3):379–390. doi: 10.1016/0022-2836(72)90421-4. [DOI] [PubMed] [Google Scholar]
  23. Spirin A. S., Nemer M. Messenger RNA in early sea-urchin embryos: cytoplasmic particles. Science. 1965 Oct 8;150(3693):214–217. doi: 10.1126/science.150.3693.214. [DOI] [PubMed] [Google Scholar]
  24. Spirin A. S. The second Sir Hans Krebs Lecture. Informosomes. Eur J Biochem. 1969 Aug;10(1):20–35. doi: 10.1111/j.1432-1033.1969.tb00651.x. [DOI] [PubMed] [Google Scholar]
  25. Tanifuji S., Higo M., Shimada T., Higo S. High molecular weight RNA synthesized in nucleoli of higher plants. Biochim Biophys Acta. 1970 Oct 15;217(2):418–425. doi: 10.1016/0005-2787(70)90539-3. [DOI] [PubMed] [Google Scholar]
  26. Waters L. C., Dure L. S., 3rd Ribonucleic acid synthesis in germinating cotton seeds. J Mol Biol. 1966 Aug;19(1):1–27. doi: 10.1016/s0022-2836(66)80046-3. [DOI] [PubMed] [Google Scholar]
  27. Weeks D. P., Marcus A. Preformed messenger of quiescent wheat embryos. Biochim Biophys Acta. 1971 Apr 8;232(4):671–684. doi: 10.1016/0005-2787(71)90759-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES