Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jun;148(3):521–525. doi: 10.1042/bj1480521

Chemical carcinogenesis in the nervous system. Preferential accumulation of O6-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea.

G P Margison, P Kleihues
PMCID: PMC1165571  PMID: 1200992

Abstract

The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds.

Full text

PDF
521

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Craddock V. M., Frei J. V. Induction of liver cell adenomata in the rat by a single treatment with N-methyl-N-nitrosourea given at various times after partial hepatectomy. Br J Cancer. 1974 Dec;30(6):503–511. doi: 10.1038/bjc.1974.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Craddock V. M. The pattern of methylated purines formed in DNA of intact and regenerating liver of rats treated with the carcinogen dimethylnitrosamine. Biochim Biophys Acta. 1973 Jun 23;312(2):202–210. doi: 10.1016/0005-2787(73)90365-1. [DOI] [PubMed] [Google Scholar]
  3. DRUCKREY H., IVANKOVIC S., PREUSSMANN R. SELEKTIVE ERZEUGUNG MALIGNER TUMOREN IM GEHIRN UND RUECKENMARK VON RATTEN DURCH N-METHYL-N-NITROSOHARNSTOFF. Z Krebsforsch. 1965 Feb 3;66:389–408. [PubMed] [Google Scholar]
  4. Druckrey H. Genotypes and phenotypes of ten inbred strains of BD-rats. Arzneimittelforschung. 1971 Aug;21(8):1274–1278. [PubMed] [Google Scholar]
  5. Druckrey H., Preussmann R., Ivankovic S., Schmähl D. Organotrope carcinogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Z Krebsforsch. 1967;69(2):103–201. [PubMed] [Google Scholar]
  6. Gerchman L. L., Ludlum D. B. The properties of O 6 -methylguanine in templates for RNA polymerase. Biochim Biophys Acta. 1973 May 10;308(2):310–316. doi: 10.1016/0005-2787(73)90160-3. [DOI] [PubMed] [Google Scholar]
  7. Goth R., Rajewsky M. F. Ethylation of nucleic acids by ethylnitrosourea-1- 14 C in the fetal and adult rat. Cancer Res. 1972 Jul;32(7):1501–1505. [PubMed] [Google Scholar]
  8. Goth R., Rajewsky M. F. Persistence of O6-ethylguanine in rat-brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc Natl Acad Sci U S A. 1974 Mar;71(3):639–643. doi: 10.1073/pnas.71.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirtikar D. M., Goldthwait D. A. The enzymatic release of O6-methylguanine and 3-methyladenine from DNA reacted with the carcinogen N-methyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1974 May;71(5):2022–2026. doi: 10.1073/pnas.71.5.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kleihues P., Magee P. N. Alkylation of rat brain nucleic acids by N-methyl-N-nitrosourea and methyl methanesulphonate. J Neurochem. 1973 Feb;20(2):595–606. doi: 10.1111/j.1471-4159.1973.tb12158.x. [DOI] [PubMed] [Google Scholar]
  11. Kleihues P., Margison G. P. Carcinogenicity of N-methyl-N-nitrosourea: possible role of excision repair of O6-methylguanine from DNA. J Natl Cancer Inst. 1974 Dec;53(6):1839–1841. [PubMed] [Google Scholar]
  12. LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lawley P. D., Orr D. J., Shah S. A. Reaction of alkylating mutagens and carcinogens with nucleic acids: N-3 of guanine as a site of alkylation by N-methyl-N-nitrosourea and dimethyl sulphate. Chem Biol Interact. 1972 May;4(6):431–434. doi: 10.1016/0009-2797(72)90064-6. [DOI] [PubMed] [Google Scholar]
  14. Lawley P. D., Shah S. A. Methylation of DNA by 3H-14C-methyl-labelled N-methyl-N-nitrosourea--evidence for transfer of the intact methyl group. Chem Biol Interact. 1973 Aug;7(2):115–120. doi: 10.1016/0009-2797(73)90020-3. [DOI] [PubMed] [Google Scholar]
  15. Lawley P. D., Shah S. A. Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Comparisons of chemical analyses at the nucleoside and base levels. Biochem J. 1972 Jun;128(1):117–132. doi: 10.1042/bj1280117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lawley P. D. Some chemical aspects of dose-response relationships in alkylation mutagenesis. Mutat Res. 1974 Jun;23(3):283–295. doi: 10.1016/0027-5107(74)90102-x. [DOI] [PubMed] [Google Scholar]
  17. Lawley P. D., Thatcher C. J. Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N'-nitro-N-nitrosoguanidine. The influence of cellular thiol concentrations on the extent of methylation and the 6-oxygen atom of guanine as a site of methylation. Biochem J. 1970 Feb;116(4):693–707. doi: 10.1042/bj1160693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loveless A. Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature. 1969 Jul 12;223(5202):206–207. doi: 10.1038/223206a0. [DOI] [PubMed] [Google Scholar]
  19. O'Connor P. J., Capps M. J., Craig A. W. Comparative studies of the hepatocarcinogen N,N-dimethylnitrosamine in vivo: reaction sites in rat liver DNA and the significance of their relative stabilities. Br J Cancer. 1973 Feb;27(2):153–166. doi: 10.1038/bjc.1973.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Swann P. F., Magee P. N. Nitrosamine-induced carcinogenesis. The alklylation of nucleic acids of the rat by N-methyl-N-nitrosourea, dimethylnitrosamine, dimethyl sulphate and methyl methanesulphonate. Biochem J. 1968 Nov;110(1):39–47. doi: 10.1042/bj1100039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Swann P. F., Magee P. N. Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate. Biochem J. 1971 Dec;125(3):841–847. doi: 10.1042/bj1250841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swenberg J. A., Koestner A., Wechsler W. The induction of tumors of the nervous system with intravenous methylnitrosourea. Lab Invest. 1972 Jan;26(1):74–85. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES