Abstract
A new method is described for estimating initial velocities of enzyme-catalysed reactions. It is simple to apply either graphically or numerically, and is particularly appropriate for experiments in which the initial straight part of the progress curve is very short or non-existent. It requires no more knowledge than is readily available about the details of the system, such as the extent of reaction at equilibrium, the rate of enzyme inactivation, the nature of product inhibition etc., unlike some other methods of analysing progress curves, which are often invalidated by small errors in the defining assumptions.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins G. L., Nimmo I. A. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J. 1973 Dec;135(4):779–784. doi: 10.1042/bj1350779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornish-Bowden A., Eisenthal R. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot andother methods. Biochem J. 1974 Jun;139(3):721–730. doi: 10.1042/bj1390721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Merino F. M. A new method for determining the Michaelis constant. Biochem J. 1974 Oct;143(1):93–95. doi: 10.1042/bj1430093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernley H. N. Statistical estimations in enzyme kinetics. The integrated Michaelis equation. Eur J Biochem. 1974 Apr 1;43(2):377–378. doi: 10.1111/j.1432-1033.1974.tb03423.x. [DOI] [PubMed] [Google Scholar]
- Foster R. J., Niemann C. The Evaluation of the Kinetic Constants of Enzyme Catalyzed Reactions. Proc Natl Acad Sci U S A. 1953 Oct;39(10):999–1003. doi: 10.1073/pnas.39.10.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem. 1970 Nov 10;245(21):5788–5799. [PubMed] [Google Scholar]
- Gingold M. P. Expressions of the Michaelis-Menten equation when studying enzyme reactions in a variable-volume medium. Biochem J. 1974 Dec;143(3):771–773. doi: 10.1042/bj1430771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNOWLES J. R. THE ROLE OF METHIONINE IN ALPHA-CHYMOTRYPSIN-CATALYSED REACTIONS. Biochem J. 1965 Apr;95:180–190. doi: 10.1042/bj0950180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klesov A. A., Berezin I. V. Primenie integral'noi formy uravneniia skorosti dlia opredeleniia kineticheskikh konstant fermentativnykh reaktsii. Biokhimiia. 1972 Jan-Feb;37(1):170–183. [PubMed] [Google Scholar]
- LOWE G., WILLIAMS A. PAPAIN-CATALYSED HYDROLYSIS OF SOME HIPPURIC ESTERS. A NEW MECHANISM FOR PAPAIN-CATALYSED HYDROLYSIS. Biochem J. 1965 Jul;96:199–204. doi: 10.1042/bj0960199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H. J., Wilson I. B. Enzymic parameters: measurement of V and Km. Biochim Biophys Acta. 1971 Sep 22;242(3):519–522. doi: 10.1016/0005-2744(71)90144-6. [DOI] [PubMed] [Google Scholar]
- MASSEY V., VEEGER C. Studies on the reaction mechanism of lipoyl dehydrogenase. Biochim Biophys Acta. 1961 Mar 18;48:33–47. doi: 10.1016/0006-3002(61)90512-1. [DOI] [PubMed] [Google Scholar]
- Newman P. F., Atkins G. L., Nimmo I. A. The effect of systematic error on the accuracy of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J. 1974 Dec;143(3):779–781. doi: 10.1042/bj1430779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philo R. D., Selwyn M. J. Use of progress curves to investigate product inhibition in enzyme-catalysed reactions. Application to the soluble mitochondrial adenosine triphosphatase. Biochem J. 1973 Nov;135(3):525–530. doi: 10.1042/bj1350525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHØNHEYDER F. Kinetics of 'acid' phosphatase action. Biochem J. 1952 Jan;50(3):378–384. doi: 10.1042/bj0500378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwert G. W. Use of integrated rate equations in estimating the kinetic constants of enzyme-catalyzed reactions. J Biol Chem. 1969 Mar 10;244(5):1278–1284. [PubMed] [Google Scholar]
- Selwyn M. J. A simple test for inactivation of an enzyme during assay. Biochim Biophys Acta. 1965 Jul 29;105(1):193–195. doi: 10.1016/s0926-6593(65)80190-4. [DOI] [PubMed] [Google Scholar]
- Storer A. C., Cornish-Bowden A. The kinetics of coupled enzyme reactions. Applications to the assay of glucokinase, with glucose 6-phosphate dehydrogenase as coupling enzyme. Biochem J. 1974 Jul;141(1):205–209. doi: 10.1042/bj1410205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALTER C., FRIEDEN E. THE PREVALENCE AND SIGNIFICANCE OF THE PRODUCT INHIBITION OF ENZYMES. Adv Enzymol Relat Areas Mol Biol. 1963;25:167–274. doi: 10.1002/9780470122709.ch4. [DOI] [PubMed] [Google Scholar]
- Walter C., Barrett M. J. The information content of enzyme kinetic data. 3. A comparison of four methods for fitting kinetic data to a power series. Enzymologia. 1970 Mar 31;38(3):147–160. [PubMed] [Google Scholar]