Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Jul;150(1):97–104. doi: 10.1042/bj1500097

Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

L B Brattsten, C F Wilkinson
PMCID: PMC1165708  PMID: 1004

Abstract

1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase.

Full text

PDF
97

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron J., Tephly T. R. Further studies on the relationship of the stimulatory effects of phenobarbital and 3,4-benzpyrene on hepatic heme synthesis to their effects on hepatic microsomal drug oxidations. Arch Biochem Biophys. 1970 Aug;139(2):410–420. doi: 10.1016/0003-9861(70)90494-7. [DOI] [PubMed] [Google Scholar]
  2. Beattie D. S., Stuchell R. N. Studies on the induction of hepatic delta-aminolevulinic acid synthetase in rat liver mitochondria. Arch Biochem Biophys. 1970 Aug;139(2):291–297. doi: 10.1016/0003-9861(70)90480-7. [DOI] [PubMed] [Google Scholar]
  3. Chan S. K., Reibling A., Mahaffey W. L., Lin C. C. The delta-aminolevulinic acid synthetase activity and the effect of exogenous delta-aminolevulinate on the synthesis of cytochrome c in the thoracic muscles of the tobacco horn worm during adult development. Biochim Biophys Acta. 1973 Dec 5;329(2):251–255. doi: 10.1016/0304-4165(73)90289-4. [DOI] [PubMed] [Google Scholar]
  4. De Matteis F., Gibbs A. Stimulation of liver 5-aminolaevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450. Studies with phenylbutazone and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Biochem J. 1972 Mar;126(5):1149–1160. doi: 10.1042/bj1261149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Matteis F. Loss of haem in rat liver caused by the porphyrogenic agent 2-allyl-2-isopropylacetamide. Biochem J. 1971 Oct;124(4):767–777. doi: 10.1042/bj1240767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FINCHAM J. R. Effects of a gene mutation in Neurospora crassa relating to glutamic dehydrogenase formation. J Gen Microbiol. 1954 Oct;11(2):236–246. doi: 10.1099/00221287-11-2-236. [DOI] [PubMed] [Google Scholar]
  7. GRANICK S., URATA G. Increase in activity of alpha-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-1,4-dihydrocollidine. J Biol Chem. 1963 Feb;238:821–827. [PubMed] [Google Scholar]
  8. Hayashi N., Kurashima Y., Kikuchi G. Mechanism of allylisopropylacetamide-induced increase of -aminolevulinate synthetase in liver mitochondria. V. Mechanism of regulation by hemin of the level of -aminolevulinate synthetase in rat liver mitochondria. Arch Biochem Biophys. 1972 Jan;148(1):10–21. doi: 10.1016/0003-9861(72)90109-9. [DOI] [PubMed] [Google Scholar]
  9. Irving E. A., Elliott W. H. A sensitive radiochemical assay method for delta-aminolevulinic acid synthetase. J Biol Chem. 1969 Jan 10;244(1):60–67. [PubMed] [Google Scholar]
  10. Krieger R. I., Wilkinson C. F. An endogenous inhibitor of microsomal mixed-function oxidases in homogenates of the southern armyworm (Prodenia eridania). Biochem J. 1970 Mar;116(5):781–789. doi: 10.1042/bj1160781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krieger R. I., Wilkinson C. F. Microsomal mixed-function oxidases in insects. I. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridania). Biochem Pharmacol. 1969 Jun;18(6):1403–1415. doi: 10.1016/0006-2952(69)90253-6. [DOI] [PubMed] [Google Scholar]
  12. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  13. Okamoto H., Yamamoto S., Nozaki M., Hayaishi O. On the submitochondrial localization of l-kynurenine-3-hydroxylase. Biochem Biophys Res Commun. 1967 Feb 8;26(3):309–314. doi: 10.1016/0006-291x(67)90123-4. [DOI] [PubMed] [Google Scholar]
  14. Scholnick P. L., Hammaker L. E., Marver H. S. Souble -aminolevulinic acid synthetase of rat liver. I. Some properties of the partially purified enzyme. J Biol Chem. 1972 Jul 10;247(13):4126–4131. [PubMed] [Google Scholar]
  15. TSCHUDY D. P., WELLAND F. H., COLLINS A., HUNTER G., Jr THE EFFECT OF CARBOHYDRATE FEEDING ON THE INDUCTION OF DELTA-AMINOLEVULINIC ACID SYNTHETASE. Metabolism. 1964 May;13:396–406. doi: 10.1016/0026-0495(64)90113-1. [DOI] [PubMed] [Google Scholar]
  16. URATA G., GRANICK S. Biosynthesis of alpha-aminoketones and the metabolism of aminoacetone. J Biol Chem. 1963 Feb;238:811–820. [PubMed] [Google Scholar]
  17. Wada O., Yano Y., Urata G., Nakao K. Behavior of hepatic microsomal cytochromes after treatment of mice with drugs known to disturb porphyrin metabolism in liver. Biochem Pharmacol. 1968 Apr;17(4):595–603. doi: 10.1016/0006-2952(68)90275-x. [DOI] [PubMed] [Google Scholar]
  18. Whiting M. J., Elliott W. H. Purification and properties of solubilized mitochondrial -aminolevulinic acid synthetase and comparison with the cytosol enzyme. J Biol Chem. 1972 Nov 10;247(21):6818–6826. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES