Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Aug;150(2):263–268. doi: 10.1042/bj1500263

Effect of environmental stress of low pressure on tyrosine aminotransferase and phenylalanine 4-hydroxylase activities in the rat.

M A Namboodiri, T Ramasarma
PMCID: PMC1165734  PMID: 241336

Abstract

1. Tyrosine aminotransferase activity in the liver increased about fourfold after 9h, on exposure of rats to stress of low pressure. 2. The phenylalanine hydroxylase activity increased about 60% on exposure for 24h or more. 3. An environmental pressure decrease of about 0.033 MN/m2 is needed to increase the activity of tyrosine aminotransferase. 4. Adrenalectomy completely abolished the increase in activity of tyrosine aminotransferase obtained on exposure to low pressure. 5. Treatment with cycloheximide or actinomycin D prevented the increase in activity of tyrosine aminotransferase. 6. Treatment with cycloheximide at the early part of exposure to stress prevented the increase in activity of phenylalanine hydroxylase obtained after 24h.

Full text

PDF
263

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amruthavalli E., Ramasarma T. Induction of delta-aminolaevulinate synthetase under environmental-stress conditions. Biochem J. 1973 Dec;136(4):1091–1096. doi: 10.1042/bj1361091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumel I., DeFeo J. J., Lal H. Differential effect of hypobaric hypoxia on potency of CNS depressants in rats and mice. Proc Soc Exp Biol Med. 1969 Nov;132(2):629–631. doi: 10.3181/00379727-132-34275. [DOI] [PubMed] [Google Scholar]
  3. Bishop C. Blood preservation solutions containing adenine, phosphate, and guanosine. Proc Soc Exp Biol Med. 1966 Jun;122(2):424–428. doi: 10.3181/00379727-122-31152. [DOI] [PubMed] [Google Scholar]
  4. Black I. B., Axelrod J. Biphasic effect of norepinephrine in the regulation of hepatic tyrosine transaminase activity. Arch Biochem Biophys. 1970 Jun;138(2):614–619. doi: 10.1016/0003-9861(70)90388-7. [DOI] [PubMed] [Google Scholar]
  5. Boulouard R. Adrenocortical activity during adaptation to cold in the rat: role of Porter-Silber chromogens. Fed Proc. 1966 Jul-Aug;25(4):1195–1199. [PubMed] [Google Scholar]
  6. Bublitz C. A direct assay for liver phenylalanine hydroxylase. Biochim Biophys Acta. 1969 Nov 4;191(2):249–256. doi: 10.1016/0005-2744(69)90244-7. [DOI] [PubMed] [Google Scholar]
  7. Castells S., Shirali S. Daily rhythmic changes in hepatic phenylalanine hydroxylase activity: role of dietary phenylalanine. Life Sci II. 1971 Feb 22;10(4):233–239. doi: 10.1016/0024-3205(71)90023-3. [DOI] [PubMed] [Google Scholar]
  8. Cymerman A., Robinson S. M., McCullough D. Alteration of rat brain catecholamine metabolism during exposure to hypobaric hypoxia. Can J Physiol Pharmacol. 1972 Apr;50(4):321–327. doi: 10.1139/y72-048. [DOI] [PubMed] [Google Scholar]
  9. Feldman D. Ontogeny of rat hepatic glucocorticoid receptors. Endocrinology. 1974 Nov;95(5):1219–1227. doi: 10.1210/endo-95-5-1219. [DOI] [PubMed] [Google Scholar]
  10. Fiala S., Fiala E. Induction of tyrosine transaminase in rat liver by actidione. Nature. 1966 Apr 30;210(5035):530–531. doi: 10.1038/210530a0. [DOI] [PubMed] [Google Scholar]
  11. GELLER E., YUWILER A., SCHAPIRO S. COMPARATIVE EFFECTS OF A STRESS AND CORTISOL UPON SOME ENZYMIC ACTIVITIES. Biochim Biophys Acta. 1964 Nov 8;93:311–315. doi: 10.1016/0304-4165(64)90380-0. [DOI] [PubMed] [Google Scholar]
  12. Gibb J. W., Webb J. G. The effects of reserpine, alpha-methyltyrosine, and L-3,4-dihydroxyphenylalanine on brain tyrosine transaminase. Proc Natl Acad Sci U S A. 1969 Jun;63(2):364–369. doi: 10.1073/pnas.63.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldman R. H., Harrison D. C. The effects of hypoxia and hypercarbia on myocardial catecholamines. J Pharmacol Exp Ther. 1970 Aug;174(2):307–314. [PubMed] [Google Scholar]
  14. Hurwitz D. A., Robinson S. M., Barofsky I. Behavior decrements and brain catecholamine changes in rats exposed to hypobaric hypoxia. Psychopharmacologia. 1971;19(1):26–33. doi: 10.1007/BF00403699. [DOI] [PubMed] [Google Scholar]
  15. Inamdar A. R., Kurup C. K., Ramasarma T. Effect of hypobaric stress on enzymes of tryptophan metabolism. Biochem J. 1972 Apr;127(3):509–514. doi: 10.1042/bj1270509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KAUFMAN S. The enzymatic conversion of phenylalanine to tyrosine. J Biol Chem. 1957 May;226(1):511–524. [PubMed] [Google Scholar]
  17. Kaufman S. The phenylalanine hydroxylating system from mammalian liver. Adv Enzymol Relat Areas Mol Biol. 1971;35:245–319. doi: 10.1002/9780470122808.ch6. [DOI] [PubMed] [Google Scholar]
  18. Klain G. J. Acute high altitude stress and enzyme activities in the rat adrenal medulla. Endocrinology. 1972 Dec;91(6):1447–1449. doi: 10.1210/endo-91-6-1447. [DOI] [PubMed] [Google Scholar]
  19. Mavrides C., Lane E. A. The permissive role of cortisol in the regulation of rat liver tyrosine aminotransferase. Can J Biochem. 1970 Jan;48(1):13–19. doi: 10.1139/o70-003. [DOI] [PubMed] [Google Scholar]
  20. McGee M. M., Greengard O., Knox W. E. Liver phenylalanine hydroxylase activity in relation to blood concentrations of tyrosine and phenylalanine in the rat. Biochem J. 1972 May;127(4):675–680. doi: 10.1042/bj1270675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Merritt J. H., Medina M. A. Altitude-induced alterations in drug action and metabolism. Life Sci. 1968 Nov 1;7(21):1163–1169. doi: 10.1016/0024-3205(68)90285-3. [DOI] [PubMed] [Google Scholar]
  22. RAMEY E. R., GOLDSTEIN M. S. The adrenal cortex and the sympathetic nervous system. Physiol Rev. 1957 Apr;37(2):155–195. doi: 10.1152/physrev.1957.37.2.155. [DOI] [PubMed] [Google Scholar]
  23. ROSEN F., HARDING H. R., MILHOLLAND R. J., NICHOL C. A. GLUCOCORTICOIDS AND TRANSAMINASE ACTIVITY. VI. COMPARISON OF THE ADAPTIVE INCREASES OF ALANINE- AND TYROSINE-ALPHA-KETOGLUTARATE TRANSAMINASES. J Biol Chem. 1963 Nov;238:3725–3729. [PubMed] [Google Scholar]
  24. Robinson S. M., Milberg J. Alterations of d-amphetamine sulfate lethality and body temperature in mice during acute altitude exposure. Toxicol Appl Pharmacol. 1970 Mar;16(2):540–546. doi: 10.1016/0041-008x(70)90029-3. [DOI] [PubMed] [Google Scholar]
  25. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  26. Susheela L., Inamdar A. R., Ramasarma T. Differential alteration of enzymes under hypobaria and hypoxia. FEBS Lett. 1972 Sep 15;25(2):295–297. doi: 10.1016/0014-5793(72)80507-6. [DOI] [PubMed] [Google Scholar]
  27. UDENFRIEND S., COOPER J. R. The chemical estimation of tyrosine and tyramine. J Biol Chem. 1952 May;196(1):227–233. [PubMed] [Google Scholar]
  28. Verbin R. S., Farber E. Effect of cycloheximide on the cell cycle of the crypts of the small intestine of the rat. J Cell Biol. 1967 Dec;35(3):649–658. doi: 10.1083/jcb.35.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wurtman R. J., Larin F., Mostafapour S., Fernstrom J. D. Brain catechol synthesis: control by train tyrosine concentration. Science. 1974 Jul 12;185(4146):183–184. doi: 10.1126/science.185.4146.183. [DOI] [PubMed] [Google Scholar]
  30. YOUNG C. W., ROBINSON P. F., SACKTOR B. INHIBITION OF THE SYNTHESIS OF PROTEIN IN INTACT ANIMALS BY ACETOXYCYCLOHEXIMIDE AND A METABOLIC DERANGEMENT CONCOMITANT WITH THIS BLOCKADE. Biochem Pharmacol. 1963 Aug;12:855–865. doi: 10.1016/0006-2952(63)90116-3. [DOI] [PubMed] [Google Scholar]
  31. Zigmond M. J., Wilson S. P. Studies on the interaction between catecholamines and tyrosine aminotransferase in brain. Biochem Pharmacol. 1973 Sep 1;22(17):2151–2163. doi: 10.1016/0006-2952(73)90114-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES