Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Sep;150(3):379–387. doi: 10.1042/bj1500379

Factors regulating amino acid release from extrasplanchnic tissues in the rat. Interactions of alanine and glutamine.

P J Blackshear, P A Holloway, K G Alberti
PMCID: PMC1165752  PMID: 2155

Abstract

1. Factors regulating the release of alanine and glutamine in vivo were investigated in starved rats by removing the liver from the circulation and monitoring blood metabolite changes for 30 min. 2. Alanine and glutamine were the predominant amino acids released into the circulation in this preparation. 3. Dichloroacetate, an activator of pyruvate dehydrogenase, inhibited net alanine release: it also interfered with the metabolism of the branched-chain amino acids valine, leucine and isoleucine. 4. L-Cycloserine, an inhibitor of alanine aminotransferase, decreased alanine accumulation by 80% after functional hepatectomy, whereas methionine sulphoximine, an inhibitor of glutamine synthetase, decreased glutamine accumulation by the same amount. 5. It was concluded that: (a) the alanine aminotransferase and the glutamine synthetase pathways respectively were responsible for 80% of the alanine and glutamine released into the circulation by the extrasplanchnic tissues, and extrahepatic proteolysis could account for a maximum of 20%; (b) alanine formation by the peripheral tissues was dependent on availability of pyruvate and not of glutamate; (c) glutamate availability could influence glutamine formation subject, possibly, to renal control.

Full text

PDF
379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa T., Matsutaka H., Yamamoto H., Okuda T., Ishikawa E. Gluconeogenesis and amino acid metabolism. II. Inter-organal relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. J Biochem. 1973 Nov;74(5):1003–1017. [PubMed] [Google Scholar]
  2. BARBIERI P., DI MARCO A., FUOCO L., JULITA P., MIGLIACCI A., RUSCONI A. Investigation on the mode of action of cycloserine upon protein synthesis of E. coli and animal cells. 2. Action of L-cycloserine on protein metabolism of alanine and on enzymic preparations. Biochem Pharmacol. 1960 Jul;3:264–271. doi: 10.1016/0006-2952(60)90090-3. [DOI] [PubMed] [Google Scholar]
  3. Backshear P. J., Holloway P. A., Alberti K. G. Metabolic interactions of dichloroacetate and insulin in experimental diabetic ketoacidosis. Biochem J. 1975 Feb;146(2):447–456. doi: 10.1042/bj1460447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackshear P. J., Holloway P. A., Alberti K. G. The effects of starvation and insulin on the release of gluconeogenic substrates from the extra-splanchnic tissues in vivo. FEBS Lett. 1974 Nov 15;48(2):310–313. doi: 10.1016/0014-5793(74)80493-x. [DOI] [PubMed] [Google Scholar]
  5. Blackshear P. J., Holloway P. A., Alberti K. G. The metabolic effects of sodium dichloroacetate in the starved rat. Biochem J. 1974 Aug;142(2):279–286. doi: 10.1042/bj1420279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connelly J. L., Danner D. J., Bowden J. A. Branched chain alpha-keto acid metabolism. I. Isolation, purification, and partial characterization of bovine liver alpha-ketoisocaproic:alpha-keto-beta-methylvaleric acid dehydrogenase. J Biol Chem. 1968 Mar 25;243(6):1198–1203. [PubMed] [Google Scholar]
  7. Dawson A. G., Hird F. J., Morton D. J. Oxidation of leucine by rat liver and kidney. Arch Biochem Biophys. 1967 Nov;122(2):426–433. doi: 10.1016/0003-9861(67)90216-0. [DOI] [PubMed] [Google Scholar]
  8. Eggstein M., Kreutz F. H. Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. I. Prinzip, Durchführung und Besprechung der Methode. Klin Wochenschr. 1966 Mar 1;44(5):262–267. doi: 10.1007/BF01747716. [DOI] [PubMed] [Google Scholar]
  9. Felig P. Interaction of insulin and amino acid metabolism in the regulation of gluconeogenesis. Isr J Med Sci. 1972 Mar;8(3):262–270. [PubMed] [Google Scholar]
  10. Felig P. The glucose-alanine cycle. Metabolism. 1973 Feb;22(2):179–207. doi: 10.1016/0026-0495(73)90269-2. [DOI] [PubMed] [Google Scholar]
  11. Felig P., Wahren J. Protein turnover and amino acid metabolism in the regulation of gluconeogenesis. Fed Proc. 1974 Apr;33(4):1092–1097. [PubMed] [Google Scholar]
  12. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  13. HOPPER S., SEGAL H. L. COMPARATIVE PROPERTIES OF GLUTAMIC-ALANINE TRANSAMINASE FROM SEVERAL SOURCES. Arch Biochem Biophys. 1964 Jun;105:501–505. doi: 10.1016/0003-9861(64)90042-6. [DOI] [PubMed] [Google Scholar]
  14. HOPPER S., SEGAL H. L. Kinetic studies of rat liver glutamicalanine transaminase. J Biol Chem. 1962 Oct;237:3189–3195. [PubMed] [Google Scholar]
  15. Hills A. G., Reid E. L., Kerr W. D. Circulatory transport of L-glutamine in fasted mammals: cellular sources of urine ammonia. Am J Physiol. 1972 Dec;223(6):1470–1476. doi: 10.1152/ajplegacy.1972.223.6.1470. [DOI] [PubMed] [Google Scholar]
  16. Iqbal K., Ottaway J. H. Glutamine synthetase in muscle and kidney. Biochem J. 1970 Sep;119(2):145–156. doi: 10.1042/bj1190145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ishikawa E., Aikawa T., Matsutaka H. The role of alanine and serine in hepatic gluconeogenesis. J Biochem. 1972 Jun;71(6):1093–1095. doi: 10.1093/oxfordjournals.jbchem.a129861. [DOI] [PubMed] [Google Scholar]
  18. Mallette L. E., Exton J. H., Park Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5724–5728. [PubMed] [Google Scholar]
  19. Marliss E. B., Aoki T. T., Pozefsky T., Most A. S., Cahill G. F., Jr Muscle and splanchnic glutmine and glutamate metabolism in postabsorptive andstarved man. J Clin Invest. 1971 Apr;50(4):814–817. doi: 10.1172/JCI106552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McAllister A., Allison S. P., Randle P. J. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo. Biochem J. 1973 Aug;134(4):1067–1081. doi: 10.1042/bj1341067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mortimore G. E., Mondon C. E. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem. 1970 May 10;245(9):2375–2383. [PubMed] [Google Scholar]
  22. Odessey R., Khairallah E. A., Goldberg A. L. Origin and possible significance of alanine production by skeletal muscle. J Biol Chem. 1974 Dec 10;249(23):7623–7629. [PubMed] [Google Scholar]
  23. Otto K. Alanin-Transaminase und Gluconeogenese. Hoppe Seylers Z Physiol Chem. 1965;341(1):99–104. [PubMed] [Google Scholar]
  24. Ozand P. T., Tildon J. T., Wapnir R. A., Cornblath M. Alanine formation by rat muscle homogenate. Biochem Biophys Res Commun. 1973 Jul 2;53(1):251–257. doi: 10.1016/0006-291x(73)91427-7. [DOI] [PubMed] [Google Scholar]
  25. PACE J., McDERMOTT E. E. Methionine sulphoximine and some enzyme systems in volving glutamine. Nature. 1952 Mar 8;169(4297):415–416. doi: 10.1038/169415a0. [DOI] [PubMed] [Google Scholar]
  26. Ruderman N. B., Berger M. The formation of glutamine and alanine in skeletal muscle. J Biol Chem. 1974 Sep 10;249(17):5500–5506. [PubMed] [Google Scholar]
  27. Ruderman N. B., Lund P. Amino acid metabolism in skeletal muscle. Regulation of glutamine and alanine release in the perfused rat hindquarter. Isr J Med Sci. 1972 Mar;8(3):295–302. [PubMed] [Google Scholar]
  28. Schein P. S., Alberti K. G., Williamson D. H. Effects of streptozotocin on carbohydrate and lipid metabolism in the rat. Endocrinology. 1971 Sep;89(3):827–834. doi: 10.1210/endo-89-3-827. [DOI] [PubMed] [Google Scholar]
  29. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williamson D. H., Lopes-Vieira O., Walker B. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem J. 1967 Aug;104(2):497–502. doi: 10.1042/bj1040497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES