Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Sep;150(3):389–395. doi: 10.1042/bj1500389

Stimulation of hepatic mitochondrial calcium transport by elevated plasma insulin concentrations.

D M Dorman, G J Barritt, F L Bygrave
PMCID: PMC1165753  PMID: 1212198

Abstract

The effect of insulin (injected intraperitoneally) on the transport of Ca2+ by hepatic mitochondria from rats was investigated. 2. Elevated concentrations of plasma insulin within the physiological range (10-100muunits/ml) stimulate the initial rate of Ca2+ transport into mitochondria at 4 degrees C by about 75% and prolong by approx. tenfold the time for which the mitochondria retain the accumulated Ca2+. 3. The prolonged retention of Ca2+ is observed under the conditions where hypoglycaemia is significantly decreased by the simultaneous injection of glucose and insulin. 4. A good correlation is observed between the effects on Ca2+ transport and the decrease in blood glucose concentration when the amount of insulin injected was varied. 5. The effects of insulin on mitochondrial Ca2+ transport are apparent at about 30 min after the injection, and are inhibited by cycloheximide. 6. There is little change in mitochondrial energy transduction after the administration of insulin. 7. The results are briefly discussed in relation to the mechanisms of Ca2+ transport across the inner mitochondrial membrane and the role of mitochondria in modifying intracellular Ca2+ concentrations with reference to the mechanism(s) by which insulin affects cellular metabolism.

Full text

PDF
389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatt L. M., Kim K. H. Regulation of rat liver glycogen synthetase. Relationship of the hormonal activation and the time-dependent in vitro activation. J Biol Chem. 1971 Dec 10;246(23):7256–7264. [PubMed] [Google Scholar]
  2. Bloom S. R., Edwards A. V., Hardy R. N., Malinowska K. W., Silver M. Endocrine responses to insulin hypoglycaemia in the young calf. J Physiol. 1975 Jan;244(3):783–803. doi: 10.1113/jphysiol.1975.sp010826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
  4. Bygrave F. L., Daday A. A., Doy F. A. Evidence of a calcium-ion-transport system in mitochondria isolated from flight muscle of the developing sheep blowfly Lucilia cuprina. Biochem J. 1975 Mar;146(3):601–608. doi: 10.1042/bj1460601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bygrave F. L. The ionic environment and metabolic control. Nature. 1967 May 13;214(5089):667–671. doi: 10.1038/214667a0. [DOI] [PubMed] [Google Scholar]
  6. Friedmann B., Goodman E. H., Jr, Weinhouse S. Effects of insulin and fatty acids on gluconeogenesis in the rat. J Biol Chem. 1967 Aug 25;242(16):3620–3627. [PubMed] [Google Scholar]
  7. Grossman A., Boctor A. Evidence for reversible inactivation of induced tyrosine aminotransferase in rat liver in vivo. Proc Natl Acad Sci U S A. 1972 May;69(5):1161–1164. doi: 10.1073/pnas.69.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HALES C. N., RANDLE P. J. Immunoassay of insulin with insulin-antibody precipitate. Biochem J. 1963 Jul;88:137–146. doi: 10.1042/bj0880137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kimmich G. A., Rasmussen H. Regulation of pyruvate carboxylase activity by calcium in intact rat liver mitochondria. J Biol Chem. 1969 Jan 10;244(1):190–199. [PubMed] [Google Scholar]
  10. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  11. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meli J., Bygrave F. L. The role of mitochondria in modifying calcium-sensitive cytoplasmic metabolic activities. Modification of pyruvate kinase activity. Biochem J. 1972 Jun;128(2):415–420. doi: 10.1042/bj1280415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller T. B., Jr, Larner J. Mechanism of control of hepatic glycogenesis by insulin. J Biol Chem. 1973 May 25;248(10):3483–3488. [PubMed] [Google Scholar]
  14. Pfaff E., Heldt H. W., Klingenberg M. Adenine nucleotide translocation of mitochondria. Kinetics of the adenine nucleotide exchange. Eur J Biochem. 1969 Oct;10(3):484–493. doi: 10.1111/j.1432-1033.1969.tb00715.x. [DOI] [PubMed] [Google Scholar]
  15. Rao K. N., de Smet M., Howells A. J., Bygrave F. L. Inhibition by calcium of tRNA aminoacylation in preparations from rat liver. FEBS Lett. 1974 May 1;41(2):185–188. doi: 10.1016/0014-5793(74)81207-x. [DOI] [PubMed] [Google Scholar]
  16. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
  17. Reed K. C., Bygrave F. L. A re-evaluation of energy-independent calcium-ion binding by rat liver mitochondria. Biochem J. 1974 Sep;142(3):555–566. doi: 10.1042/bj1420555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reed K. C., Bygrave F. L. Accumulation of lanthanum by rat liver mitochondria. Biochem J. 1974 Feb;138(2):239–252. doi: 10.1042/bj1380239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts J. B., Bygrave F. L. Influence of mitochondria on phospholipid synthesis in preparations from rat liver. Biochem J. 1973 Nov;136(3):467–475. doi: 10.1042/bj1360467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roobol A., Alleyne G. A. Regulation of renal gluconeogenesis by calcium ions, hormones and adenosine 3':5'-cyclic monophosphate. Biochem J. 1973 May;134(1):157–165. doi: 10.1042/bj1340157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Severson D. L., Denton R. M., Pask H. T., Randle P. J. Calcium and magnesium ions as effectors of adipose-tissue pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1974 May;140(2):225–237. doi: 10.1042/bj1400225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sica V., Cuatrecasas P. Effects of insulin, epinephrine, and cyclic adenosine monophosphate on pyruvate dehydrogenase of adipose tissue. Biochemistry. 1973 Jun 5;12(12):2282–2291. doi: 10.1021/bi00736a016. [DOI] [PubMed] [Google Scholar]
  24. Spencer T., Bygrave F. L. Modification by calcium ions of adenine nucleotide translocation in rat liver mitochondria. Biochem J. 1972 Sep;129(2):355–365. doi: 10.1042/bj1290355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spencer T., Bygrave F. L. The role of mitochondria in modifying the cellular ionic environment: studies of the kinetic accumulation of calcium by rat liver mitochondria. J Bioenerg. 1973 Apr;4(3):347–362. doi: 10.1007/BF01648977. [DOI] [PubMed] [Google Scholar]
  26. Treadow B. R., Khairallah E. A. Regulation of phospho-enol-pyruvate carboxykinase during starvation and glucose repression. Nat New Biol. 1972 Oct 4;239(92):131–133. doi: 10.1038/newbio239131a0. [DOI] [PubMed] [Google Scholar]
  27. Wieland O. H., Patzelt C., Löffler G. Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion. Eur J Biochem. 1972 Apr 11;26(3):426–433. doi: 10.1111/j.1432-1033.1972.tb01783.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES