Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Sep;150(3):463–469. doi: 10.1042/bj1500463

Regulation of synthesis of ribosomal proteins during pyrimidine starvation in Escherichia coli.

B G Beatty, W W Mak, J T Wong
PMCID: PMC1165761  PMID: 1108874

Abstract

The synthesis of ribosomal proteins during pyrimidine starvation was investigated. A progressive turn-off of protein synthesis, with a decay half-time of about 5 min, was observed when Escherichia coli cells were starved of uridine. By means of double-labelling, the syntheses of different ribosomal proteins were shown to be turned off unequally during the starvation. Comparison of the turn-off patterns for some proteins and the known polycistronic organization of the structural genes for these proteins suggests that a major cause of the unequal turn-off was the degradation of mRNA molecules for the ribosomal proteins from the 5'-end toward the 3'-end.

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartlett B. O., Scott Russell R., Jenkins W. Improved relationship between the deposition of strontium-90 and the contamination of milk in the United Kingdom. Nature. 1972 Jul 7;238(5358):46–48. doi: 10.1038/238046a0. [DOI] [PubMed] [Google Scholar]
  2. Beatty B. G., Wong J. T. Recognition of early and late biosynthetic classes ribosomal proteins in Escherichia coli. Can J Biochem. 1971 Dec;49(12):1276–1278. doi: 10.1139/o71-184. [DOI] [PubMed] [Google Scholar]
  3. Beatty B. G., Wong J. T. Synthesis and assembly of ribosomal proteins at the onset of pyrimidine starvation. Biochem Biophys Res Commun. 1970 Oct 9;41(1):99–107. doi: 10.1016/0006-291x(70)90474-2. [DOI] [PubMed] [Google Scholar]
  4. Carpenter G., Sells B. H. Synthesis of individual ribosomal proteins during a nutritional shift-up. Eur J Biochem. 1974 May 2;44(1):123–130. doi: 10.1111/j.1432-1033.1974.tb03464.x. [DOI] [PubMed] [Google Scholar]
  5. Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
  6. Hindennach I., Stöffler G., Wittmann H. G. Ribosomal proteins. Isolation of the proteins from 30S ribosomal subunits of Escherichia coli. Eur J Biochem. 1971 Nov 11;23(1):7–11. doi: 10.1111/j.1432-1033.1971.tb01584.x. [DOI] [PubMed] [Google Scholar]
  7. Jacquet M., Kepes A. Initiation, elongation and inactivation of lac messenger RNA in Escherichia coli studied studied by measurement of its beta-galactosidase synthesizing capacity in vivo. J Mol Biol. 1971 Sep 28;60(3):453–472. doi: 10.1016/0022-2836(71)90181-1. [DOI] [PubMed] [Google Scholar]
  8. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem. 1970 Aug;36(2):401–412. doi: 10.1016/0003-2697(70)90376-3. [DOI] [PubMed] [Google Scholar]
  9. Kaplan S. In vivo translation of amber and ochre codons in Escherichia coli. Mol Gen Genet. 1973 Feb 2;120(3):191–200. doi: 10.1007/BF00267151. [DOI] [PubMed] [Google Scholar]
  10. Kennell D., Bicknell I. Decay of messenger ribonucleic acid from the lactose operon of Escherichia coli as a function of growth temperature. J Mol Biol. 1973 Feb 15;74(1):21–31. doi: 10.1016/0022-2836(73)90351-3. [DOI] [PubMed] [Google Scholar]
  11. Leive L., Kollin V. Synthesis, utilization and degradation of lactose operon mRNA in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):247–259. doi: 10.1016/0022-2836(67)90330-0. [DOI] [PubMed] [Google Scholar]
  12. Molin S., von Meyenburg K., Gullov K., Maaloe O. The size of transcriptional units for ribosomal proteins in Escherichia coli. Mol Gen Genet. 1974 Mar 6;129(1):11–26. doi: 10.1007/BF00269262. [DOI] [PubMed] [Google Scholar]
  13. Morikawa N., Imamoto F. Degradation of tryptophan messenger. On the degradation of messenger RNA for the tryptophan operon in Escherichia coli. Nature. 1969 Jul 5;223(5201):37–40. doi: 10.1038/223037a0. [DOI] [PubMed] [Google Scholar]
  14. Morse D. E., Mosteller R., Baker R. F., Yanofsky C. Direction of in vivo degradation of tryptophan messenger RNA--a correction. Nature. 1969 Jul 5;223(5201):40–43. doi: 10.1038/223040a0. [DOI] [PubMed] [Google Scholar]
  15. Nomura M., Engbaek F. Expression of ribosomal protein genes as analyzed by bacteriophage Mu-induced mutations. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1526–1530. doi: 10.1073/pnas.69.6.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wittmann H. G., Stöffler G., Apirion D., Rosen L., Tanaka K., Tamaki M., Takata R., Dekio S., Otaka E. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet. 1973 Dec 20;127(2):175–189. doi: 10.1007/BF00333665. [DOI] [PubMed] [Google Scholar]
  17. Zaitlin M., Hariharasubramanian V. An improvement in a procedure for counting tritium and carbon-14 in polyacrylamide gels. Anal Biochem. 1970 May;35(1):296–297. doi: 10.1016/0003-2697(70)90038-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES