Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Sep;150(3):495–509. doi: 10.1042/bj1500495

Hepatic albumin and urea synthesis: The mathematical modelling of the dynamics of [14C]carbonate-derived guanidine-labelled arginine in the isolated perfused rat liver.

A S Tavill, D Nadkarni, J Metcalfe, E Black, R Hoffenberg, E R Carson
PMCID: PMC1165765  PMID: 813631

Abstract

A mathematical model was constructed to define the dynamics of incorporation of radioactivity into urea carbon and the guanidine carbon of arginine in plasma albumin after the rapid intraportal-venous administration of Na214CO3 in the isolated perfused rat liver. 2. The model was formulated in terms of compartmental analysis and additional experiments were designed to provide further information on subsystem dynamics and to discriminate between alternative model structures. 3. Evidence for the rapid-time-constant of labelling of intracellular arginine was provided by precursor-product analysis of precursor [14C]carboante and product [14C]urea in the perfusate. 4. Compartmental analysis of the dynamics of newly synthesized urea was based on the fate of exogenous [13C]urea, endogenous [14C]urea and the accumulation of [12C]urea in perfusate water, confirming the early completion of urea carbon labelling, the absence of continuing synthesis of labelled urea, and the presence of a small intrahepatic urea-delay pool. 5. Analysis of the perfusate dynamics of endogenously synthesized and exogenously administered [6-14C]arginine indicated that although the capacity for extrahepatic formation of [14C]-urea exists, little or no arginine formed within the intrahepatic urea cycle was transported out of the liver. However, the presence of a rapidly turning-over intrahepatic arginine pool was confirmed. 6. On the basis of these subsystem analyses it was possible to offer feasible estimations for the parameters of the mathematical model. However, it was not possible to stimulate the form and magnitude of the dynamics of newly synthesized labelled urea and albumin which were simultaneously observed after administration of [14C]carbonate on the basis of a preliminary model which postulated that both products were derived from a single hepatic pool of [16-14C]arginine. On the other hand these observed dynamics could be satisfied to a two-compartment arginine model, which also provided an explanation for discrepancies observed between albumin synthesis measured radioisotopically and immunologically. This was based on a relative overestimation of [14C]urea specific radioactivity resulting from the rapid dynamics of [14C]carbonate and the [14C]urea subsystem relative to the labelled albumin subsystem. The effects of arginine compartmentalization could be minimized in the model by minor slowing of the rate of [14C]carbonate turnover or by constant infusion of [14C]carbonate, both of which permitted valid determination of albumin-synthesis rates.

Full text

PDF
495

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERL S., TAKAGAKI G., CLARKE D. D., WAELSCH H. Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J Biol Chem. 1962 Aug;237:2562–2569. [PubMed] [Google Scholar]
  2. BERMAN M. The formulation and testing of models. Ann N Y Acad Sci. 1963 May 10;108:182–194. doi: 10.1111/j.1749-6632.1963.tb13373.x. [DOI] [PubMed] [Google Scholar]
  3. COHEN S., GORDON A. H. Catabolism of plasma albumin by the perfused rat liver. Biochem J. 1958 Dec;70(4):544–551. doi: 10.1042/bj0700544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DEBRO J. R., KORNER A. Solubility of albumin in alcohol after precipitation by trichloroacetic acid: a simplified procedure for separation of albumin. Nature. 1956 Nov 10;178(4541):1067–1067. doi: 10.1038/1781067a0. [DOI] [PubMed] [Google Scholar]
  5. Davis R. H. Metabolite distribution in cells. Science. 1972 Nov 24;178(4063):835–840. doi: 10.1126/science.178.4063.835. [DOI] [PubMed] [Google Scholar]
  6. FISHER M. M., KERLY M. AMINO ACID METABOLISM IN THE PERFUSED RAT LIVER. J Physiol. 1964 Nov;174:273–294. doi: 10.1113/jphysiol.1964.sp007487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fernandez A., Sobel C., Goldenberg H. An improved method for determination of serum albumin and globulin. Clin Chem. 1966 Apr;12(4):194–205. [PubMed] [Google Scholar]
  8. Geller D. M., Judah J. D., Nicholls M. R. Intracellular distribution of serum albumin and its possible precursors in rat liver. Biochem J. 1972 May;127(5):865–874. doi: 10.1042/bj1270865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoffenberg R., Gordon A. H., Black E. G. Albumin synthesis by the perfused rat liver. A comparison of methods with special reference to the effect of dietary protein deprivation. Biochem J. 1971 Apr;122(2):129–134. doi: 10.1042/bj1220129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jeejeebhoy K. N., Phillips M. J., Bruce-Robertson A., Ho J., Sodtke U. The acute effect of ethanol on albumin, fibrinogen and transferrin synthesis in the rat. Biochem J. 1972 Mar;126(5):1111–1124. doi: 10.1042/bj1261111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. John D. W., Miller L. L. Regulation of net biosynthesis of serum albumin and acute phase plasma proteins. Induction of enhanced net synthesis of fibrinogen, alpha1-acid glycoprotein, alpha2 (acute phase)-globulin, and haptoglobin by amino acids and hormones during perfusion of the isolated normal rat liver. J Biol Chem. 1969 Nov 25;244(22):6134–6142. [PubMed] [Google Scholar]
  12. Jones E. A., Craigie A., Tavill A. S., Simon W., Rosenoer V. M. Urea kinetics and the direct measurement of the synthetic rate of albumin utilizing [14C]carbonate. Clin Sci. 1968 Dec;35(3):553–564. [PubMed] [Google Scholar]
  13. Judah J. D., Gamble M., Steadman J. H. Biosynthesis of serum albumin in rat liver. Evidence for the existence of 'proalbumin'. Biochem J. 1973 Aug;134(4):1083–1091. doi: 10.1042/bj1341083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Judah J. D., Nicholls M. R. The separation of intracellular serum albumin from rat liver. Biochem J. 1971 Jul;123(4):643–648. doi: 10.1042/bj1230643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelman L., Saunders S. J., Frith L., Wicht S., Corrigal A. Effects of dietary protein restriction on albumin synthesis, albumin catabolism, and the plasma aminogram. Am J Clin Nutr. 1972 Nov;25(11):1174–1178. doi: 10.1093/ajcn/25.11.1174. [DOI] [PubMed] [Google Scholar]
  16. Kirsch R. E., Frith L. O., Stead R. H., Saunders S. J. Effect of alcohol on albumin synthesis by the isolated perfused rat liver. Am J Clin Nutr. 1973 Nov;26(11):1191–1194. doi: 10.1093/ajcn/26.11.1191. [DOI] [PubMed] [Google Scholar]
  17. Kirsch R. E., Saunders S. J., Frith L., Wicht S., Kelman L., Brock J. F. Plasma amino acid concentration and the regulation of albumin synthesis. Am J Clin Nutr. 1969 Dec;22(12):1559–1562. doi: 10.1093/ajcn/22.12.1559. [DOI] [PubMed] [Google Scholar]
  18. Kirsch R., Frith L., Black E., Hoffenberg R. Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature. 1968 Feb 10;217(5128):578–579. doi: 10.1038/217578a0. [DOI] [PubMed] [Google Scholar]
  19. MCFARLANE A. S. MEASUREMENT OF SYNTHESIS RATES OF LIVER-PRODUCED PLASMA PROTEINS. Biochem J. 1963 Nov;89:277–290. doi: 10.1042/bj0890277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  21. Mayer M., Shafrir E. Liver and plasma amino acid pattern in glucogenic conditions and in nephrotic syndrome. Isr J Med Sci. 1972 Jun;8(6):859–861. [PubMed] [Google Scholar]
  22. Morgan E. H., Peters T., Jr The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis. J Biol Chem. 1971 Jun 10;246(11):3500–3507. [PubMed] [Google Scholar]
  23. Mortimore G. E., Woodside K. H., Henry J. E. Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J Biol Chem. 1972 May 10;247(9):2776–2784. [PubMed] [Google Scholar]
  24. Oratz M., Schreiber S. S., Rothschild M. A. Study of albumin synthesis in relation to urea synthesis. Gastroenterology. 1973 Oct;65(4):647–650. [PubMed] [Google Scholar]
  25. Palacios R., Huitrón C., Soberón G. Preferential hydrolysis of endogenous arginine by rat liver arginase. Biochem Biophys Res Commun. 1970 Feb 6;38(3):438–443. doi: 10.1016/0006-291x(70)90732-1. [DOI] [PubMed] [Google Scholar]
  26. REEVE E. B., PEARSON J. R., MARTZ D. C. Plasma protein synthesis in the liver: method for measurement of albumin formation in vivo. Science. 1963 Mar 8;139(3558):914–916. doi: 10.1126/science.139.3558.914. [DOI] [PubMed] [Google Scholar]
  27. Rothschild M. A., Oratz M., Mongelli J., Schreiber S. S. Alcohol-induced depression of albumin synthesis: reversal by tryptophan. J Clin Invest. 1971 Sep;50(9):1812–1818. doi: 10.1172/JCI106672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rothschild M. A., Oratz M., Mongelli J., Schreiber S. S. Effect of albumin concentration on albumin synthesis in the perfused liver. Am J Physiol. 1969 May;216(5):1127–1130. doi: 10.1152/ajplegacy.1969.216.5.1127. [DOI] [PubMed] [Google Scholar]
  29. Rothschild M. A., Oratz M., Mongelli J., Schreiber S. S. Effects of a short-term fast on albumin synthesis studied in vivo, in the perfused liver, and on amino acid incorporation by hepatic microsomes. J Clin Invest. 1968 Dec;47(12):2591–2599. doi: 10.1172/JCI105941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Russell J. H., Geller D. M. Rat serum albumin biosynthesis: evidence for a precursor. Biochem Biophys Res Commun. 1973 Nov 1;55(1):239–245. doi: 10.1016/s0006-291x(73)80085-3. [DOI] [PubMed] [Google Scholar]
  31. SCHARFF R., WOOL I. G. CONCENTRATION OF AMINO ACIDS IN RAT MUSCLE AND PLASMA. Nature. 1964 May 9;202:603–604. doi: 10.1038/202603a0. [DOI] [PubMed] [Google Scholar]
  32. SKEGGS L. T., Jr An automatic method for colorimetric analysis. Am J Clin Pathol. 1957 Sep;28(3):311–322. doi: 10.1093/ajcp/28.3_ts.311. [DOI] [PubMed] [Google Scholar]
  33. SWICK R. W., HANDA D. T. The distribution of fixed carbon in amino acids. J Biol Chem. 1956 Feb;218(2):577–585. [PubMed] [Google Scholar]
  34. Swick R. W., Ip M. M. Measurement of protein turnover in rat liver with (14C)carbonate. Protein turnover during liver regeneration. J Biol Chem. 1974 Nov 10;249(21):6836–6841. [PubMed] [Google Scholar]
  35. Tavill A. S., Craigie A., Rosenoer W. M. The measurement of the synthetic rate of albumin in man. Clin Sci. 1968 Feb;34(1):1–28. [PubMed] [Google Scholar]
  36. Wochner R. D., Weissman S. M., Waldmann T. A., Houston D., Berlin N. I. Direct measurement of the rates of synthesis of plasma proteins in control subjects and patients with gastrointestinal protein loss. J Clin Invest. 1968 May;47(5):971–982. doi: 10.1172/JCI105812. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES