Abstract
Tthe properties of diphosphoinositide and triphosphoinositide phosphatases from rat kidney homogenate were studied in an assay system in which non-specific phosphatase activity was eliminated. The enzymes were not completely metal-ion dependent and were activated by Mg2+. The detergent sodium deoxycholate, Triton X-100 and Cutscum inhibited the reaction; cetyltrimethylammonium bromide only activated when added with the subtrates and in the presence Mg2+. Both enzymes had a pH optimum of 7.5. Ca2+ and Li+ both activated triphosphoinositide phosphatase, but Ca2+ inhibited and L+ had little effect on diphosphoinositide phosphatase. Cyclic AMP had no effect on either enzyme. The enzymes were three times more active in kidney cortex than in the medulla. On subcellular fractionation of kidney-cortex homogenates by differential and density-gradient centrifugation, the distribution of the enzymes resembled that of thiamin pyrophosphatase (assayed in the absence of ATP), suggesting localization in the Golgi complex. However, the distribution differed from that of the liver Golgimarker galactosyltransferase. Activities of both diphosphoinositide and triphosphoinositide phosphatases and thiamin pyrophosphatase were low in purified brush-border fragments. Further experiments indicate that at least part of the phosphatase activity is soluble.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDRADE F., HUGGINS C. G. MYO-INOSITOL PHOSPHATES IN A PHOSPHOINOSITIDE COMPLEX FROM KIDNEY. Biochim Biophys Acta. 1964 Dec 2;84:681–693. doi: 10.1016/0926-6542(64)90026-5. [DOI] [PubMed] [Google Scholar]
- Allison J. H., Stewart M. A. Reduced brain inositol in lithium-treated rats. Nat New Biol. 1971 Oct 27;233(43):267–268. doi: 10.1038/newbio233267a0. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
- Bentley P. J., Wasserman A. The effects of lithium on the permeability of an epithelial membrane, the toad urinary bladder. Biochim Biophys Acta. 1972 Apr 14;266(1):285–292. doi: 10.1016/0005-2736(72)90143-5. [DOI] [PubMed] [Google Scholar]
- Clarke N., Dawson R. M. Localization of D-myoinositol 1:2-cyclic phosphate 2-phosphohydrolase in rat kidney. Biochem J. 1972 Nov;130(1):229–238. doi: 10.1042/bj1300229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper P. H., Hawthorne J. N. Separation of diphosphoinositide and triphosphoinositide on oxalate-impregnated silica gel columns. J Chromatogr. 1973 Dec 5;87(1):267–268. doi: 10.1016/s0021-9673(01)91547-x. [DOI] [PubMed] [Google Scholar]
- DE DUVE C., WATTIAUX R., BAUDHUIN P. Distribution of enzymes between subcellular fractions in animal tissues. Adv Enzymol Relat Subj Biochem. 1962;24:291–358. doi: 10.1002/9780470124888.ch6. [DOI] [PubMed] [Google Scholar]
- Dawson R. M., Thompson W. The triphosphoinositide phosphomonoesterase of brain tissue. Biochem J. 1964 May;91(2):244–250. doi: 10.1042/bj0910244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischer B., Fleischer S., Ozawa H. Isolation and characterization of Golgi membranes from bovine liver. J Cell Biol. 1969 Oct;43(1):59–79. doi: 10.1083/jcb.43.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDFISCHER S., ESSNER E., NOVIKOFF A. B. THE LOCALIZATION OF PHOSPHATASE ACTIVITIES AT THE LEVEL OF ULTRASTRUCTURE. J Histochem Cytochem. 1964 Feb;12:72–95. doi: 10.1177/12.2.72. [DOI] [PubMed] [Google Scholar]
- Goldfischer S., Essner E., Schiller B. Nucleoside diphosphatase and thiamine pyrophosphatase activities in the endoplasmic reticulum and golgi apparatus. J Histochem Cytochem. 1971 Jun;19(6):349–360. doi: 10.1177/19.6.349. [DOI] [PubMed] [Google Scholar]
- HENDRICKSON H. S., BALLOU C. E. ION EXCHANGE CHROMATOGRAPHY OF INTACT BRAIN PHOSPHOINOSITIDES ON DIETHYLAMINOETHYL CELLULOSE BY GRADIENT SALT ELUTION IN A MIXED SOLVENT SYSTEM. J Biol Chem. 1964 May;239:1369–1373. [PubMed] [Google Scholar]
- HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
- Harris C. A., Jenner F. A. Some aspects of the inhibition of the action of antidiuretic hormone by lithium ions in the rat kidney and bladder of the toad Bufo marinus. Br J Pharmacol. 1972 Feb;44(2):223–232. [PMC free article] [PubMed] [Google Scholar]
- Harwood J. L., Hawthorne J. N. Metabolism of the phosphoinositides in guinea-pig brain synaptosomes. J Neurochem. 1969 Sep;16(9):1377–1387. doi: 10.1111/j.1471-4159.1969.tb05989.x. [DOI] [PubMed] [Google Scholar]
- Hatcher D. W., Goldstein G. Improved methods for determination of RNA and DNA. Anal Biochem. 1969 Oct 1;31(1):42–50. doi: 10.1016/0003-2697(69)90239-5. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L., Skou J. C. Preparation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidney. Biochem Biophys Res Commun. 1969 Sep 24;37(1):39–46. doi: 10.1016/0006-291x(69)90877-8. [DOI] [PubMed] [Google Scholar]
- Kai M., Salway J. G., Hawthorne J. N. The diphosphoinositide kinase of rat brain. Biochem J. 1968 Feb;106(4):791–801. doi: 10.1042/bj1060791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinne R., Kinne-Saffran E. Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere. Pflugers Arch. 1969;308(1):1–15. doi: 10.1007/BF00588029. [DOI] [PubMed] [Google Scholar]
- Lee T. C., Huggins C. G. Triphosphoinositide phosphomonoesterase in rat kidney cortex. I. General properties and subcellular localization. Arch Biochem Biophys. 1968 Jul;126(1):206–213. doi: 10.1016/0003-9861(68)90575-4. [DOI] [PubMed] [Google Scholar]
- Lee T. C., Huggins C. G. Triphosphoinositide phosphomonoesterase in rat kidney cortex. II. Purification and characterization. Arch Biochem Biophys. 1968 Jul;126(1):214–220. doi: 10.1016/0003-9861(68)90576-6. [DOI] [PubMed] [Google Scholar]
- Morré D. J., Keenan T. W., Mollenhauer H. H. Golgi apparatus function in membrane transformations and product compartmentalization: studies with cell fractions isolated from rat liver. Adv Cytopharmacol. 1971 May;1:159–182. [PubMed] [Google Scholar]
- Parkinson D. K., Radde I. C. Properties of a Ca 2+ -and Mg 2+ -activated ATP-hydrolyzing enzyme in rat kidney cortex. Biochim Biophys Acta. 1971 Jul 21;242(1):238–246. doi: 10.1016/0005-2744(71)90104-5. [DOI] [PubMed] [Google Scholar]
- Pearson I. B., Jenner F. A. Lithium in psychiatry. Nature. 1971 Aug 20;232(5312):532–533. doi: 10.1038/232532a0. [DOI] [PubMed] [Google Scholar]
- Prottey C., Salway J. G., Hawthorne J. N. The structures of enzymically produced diphosphoinositide and triphosphoinositide. Biochim Biophys Acta. 1968 Oct 22;164(2):238–251. doi: 10.1016/0005-2760(68)90150-1. [DOI] [PubMed] [Google Scholar]
- REID E. Hormonal effects on liver and kidney cytoplasm. J Endocrinol. 1956 Apr;13(3):319–329. doi: 10.1677/joe.0.0130319. [DOI] [PubMed] [Google Scholar]
- RODNIGHT R. Cerebral diphosphoinositide breakdown: activation, complexity and distribution in animal (mainly nervous) tissues. Biochem J. 1956 Jun;63(2):223–231. doi: 10.1042/bj0630223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robison G. A., Butcher R. W., Sutherland E. W. Cyclic AMP. Annu Rev Biochem. 1968;37:149–174. doi: 10.1146/annurev.bi.37.070168.001053. [DOI] [PubMed] [Google Scholar]
- Roodyn D. B. The classification and partial tabulation of enzyme studies on subcellular fractions isolated by differential centrifuging. Int Rev Cytol. 1965;18:99–190. doi: 10.1016/s0074-7696(08)60553-7. [DOI] [PubMed] [Google Scholar]
- SANTIAGO-CALVO E., MULE S., REDMAN C. M., HOKIN M. R., HOKIN L. E. THE CHROMATOGRAPHIC SEPARATION OF POLYPHOSPHOINOSITIDES AND STUDIES ON THEIR TURNOVER IN VARIOUS TISSUES. Biochim Biophys Acta. 1964 Oct 2;84:550–562. doi: 10.1016/0926-6542(64)90125-8. [DOI] [PubMed] [Google Scholar]
- SELLINGER O. Z., BEAUFAY H., JACQUES P., DOYEN A., DE DUVE C. Tissue fractionation studies. 15. Intracellular distribution and properties of beta-N-acetylglucosaminidase and beta-galactosidase in rat liver. Biochem J. 1960 Mar;74:450–456. doi: 10.1042/bj0740450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLOANE-STANLEY G. H. Anaerobic reactions of phospholipins in brain suspensions. Biochem J. 1953 Mar;53(4):613–619. doi: 10.1042/bj0530613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salway J. G., Kai M., Hawthorne J. N. Triphosphoinositide phosphomonoesterase activity in nerve cellbodies, neuroglia and subcellular fractions from whole rat brain. J Neurochem. 1967 Oct;14(10):1013–1024. doi: 10.1111/j.1471-4159.1967.tb09512.x. [DOI] [PubMed] [Google Scholar]
- Sedgwick B., Hübscher G. Metabolism of phospholipids. IX. Phosphatidate phosphohydrolase in rat liver. Biochim Biophys Acta. 1965 Jul 7;106(1):63–77. doi: 10.1016/0005-2760(65)90096-2. [DOI] [PubMed] [Google Scholar]
- Sheltawy A., Brammer M., Borrill D. The subcellular distribution of triphosphoinositide phosphomonoesterase in guinea-pig brain. Biochem J. 1972 Jul;128(3):579–586. doi: 10.1042/bj1280579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shephard E. H., Hübscher G. Phosphatidate biosynthesis in mitochondrial subfractions of rat liver. Biochem J. 1969 Jun;113(2):429–440. doi: 10.1042/bj1130429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stetten M. R., Ghosh S. B. Different properties of glucose-6-phosphatase and related enzymes in rough and smooth endoplasmic reticular membranes. Biochim Biophys Acta. 1971 Mar 9;233(1):163–175. doi: 10.1016/0005-2736(71)90369-5. [DOI] [PubMed] [Google Scholar]
- Thompson W., Dawson R. M. The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem J. 1964 May;91(2):233–236. doi: 10.1042/bj0910233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamazaki M., Hayaishi O. Allosteric properties of nucleoside diphosphatase and its identity with thiamine pyrophosphatase. J Biol Chem. 1968 Jun 10;243(11):2934–2942. [PubMed] [Google Scholar]
