Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Nov;135(3):539–541. doi: 10.1042/bj1350539

An explanation of the asymmetric binding of sugars to the human erythrocyte sugar-transport systems (Short Communication)

J E G Barnett 1, G D Holman 1, K A Munday 1
PMCID: PMC1165857  PMID: 4772277

Abstract

6-O-Alkyl-d-galactoses competitively inhibit the erythrocyte sugar-transport system when added to the outside of the cells, but not to the inside. n-Propyl β-d-glucopyranoside competitively inhibits the system on the inside of the cells, but not on the outside. A model for sugar transport is proposed.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOWYER F., WIDDAS W. F. The action of inhibitors on the facilitated hexose transfer system in erythrocytes. J Physiol. 1958 Apr 30;141(2):219–232. doi: 10.1113/jphysiol.1958.sp005969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker G. F., Widdas W. F. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model. J Physiol. 1973 May;231(1):143–165. doi: 10.1113/jphysiol.1973.sp010225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker G. F., Widdas W. F. The permeation of human red cells by 4,6-O-ethylidene- -D-glucopyranose (ethylidene glucose). J Physiol. 1973 May;231(1):129–142. doi: 10.1113/jphysiol.1973.sp010224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnett J. E., Holman G. D., Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J. 1973 Feb;131(2):211–221. doi: 10.1042/bj1310211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards P. A. The inactivation by fluorodinitrobenzene of glucose transport across the human erythrocyte membrane. The effect of glucose inside or outside the cell. Biochim Biophys Acta. 1973 May 11;307(2):415–418. doi: 10.1016/0005-2736(73)90107-7. [DOI] [PubMed] [Google Scholar]
  6. Geck P. Eigenschaften eines asymmetrischen Carrier-Modells für den Zuckertrnasport am menschlichen Erythrozyten. Biochim Biophys Acta. 1971 Aug 13;241(2):462–472. doi: 10.1016/0005-2736(71)90045-9. [DOI] [PubMed] [Google Scholar]
  7. Kahlenberg A., Dolansky D. Structural requirements of D-glucose for its binding to isolated human erythrocyte membranes. Can J Biochem. 1972 Jun;50(6):638–643. doi: 10.1139/o72-088. [DOI] [PubMed] [Google Scholar]
  8. Karlish S. J., Lieb W. R., Ram D., Stein W. D. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions. Biochim Biophys Acta. 1972 Jan 17;255(1):126–132. doi: 10.1016/0005-2736(72)90014-4. [DOI] [PubMed] [Google Scholar]
  9. Krupka R. M. Evidence for a carrier conformational change associated with sugar transport in erythrocytes. Biochemistry. 1971 Mar 30;10(7):1143–1148. doi: 10.1021/bi00783a007. [DOI] [PubMed] [Google Scholar]
  10. LeFevre P. G. A model for erythrocyte sugar transport based on substrate-conditioned "introversion" of binding sites. J Membr Biol. 1973 Jan 23;11(1):1–19. doi: 10.1007/BF01869810. [DOI] [PubMed] [Google Scholar]
  11. Levine M., Levine S., Jones M. N. The effect of temperature on the competitive inhibition of sorbose transfer in human erythrocytes by glucose. Biochim Biophys Acta. 1971 Feb 2;225(2):291–300. doi: 10.1016/0005-2736(71)90222-7. [DOI] [PubMed] [Google Scholar]
  12. Levine M., Stein W. D. The kinetic parameters of the monosaccharide transfer system of the human erythrocyte. Biochim Biophys Acta. 1966 Sep 26;127(1):179–193. doi: 10.1016/0304-4165(66)90488-0. [DOI] [PubMed] [Google Scholar]
  13. Lieb W. R., Stein W. D. Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane. Biophys J. 1970 Jul;10(7):585–609. doi: 10.1016/s0006-3495(70)86322-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller D. M. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data. Biophys J. 1968 Nov;8(11):1339–1352. doi: 10.1016/S0006-3495(68)86560-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Naftalin R. J. A model for sugar transport across red cell membranes without carriers. Biochim Biophys Acta. 1970 Jul 7;211(1):65–78. doi: 10.1016/0005-2736(70)90124-0. [DOI] [PubMed] [Google Scholar]
  16. Vidaver G. A. Inhibition of parallel flux and augmentation of counter flux shown by transport models not involving a mobile carrier. J Theor Biol. 1966 Feb;10(2):301–306. doi: 10.1016/0022-5193(66)90128-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES