Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Nov;135(3):569–572. doi: 10.1042/bj1350569

Phosphorylation of myelin basic protein by an adenosine 3′:5′-cyclic monophosphate-dependent protein kinase (Short Communication)

P R Carnegie *, B E Kemp , P R Dunkley *, A W Murray
PMCID: PMC1165865  PMID: 4359021

Abstract

Myelin basic protein was shown to be a substrate for protein kinase from rabbit muscle. One of the major sites of phosphorylation was the serine residue in the sequence Gly-Arg-Gly-Leu-Ser-Leu. The arginine residue in this sequence is known to be a substrate for a protein methylase.

Full text

PDF
569

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., Carnegie P. R. Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science. 1971 Feb 12;171(3971):579–581. doi: 10.1126/science.171.3971.579. [DOI] [PubMed] [Google Scholar]
  2. Carnegie P. R. Amino acid sequence of the encephalitogenic basic protein from human myelin. Biochem J. 1971 Jun;123(1):57–67. doi: 10.1042/bj1230057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deibler G. E., Martenson R. E., Kies M. W. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem. 1972;2(2):139–165. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
  4. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson E. M., Maeno H., Greengard P. Phosphorylation of endogenous protein of rat brain by cyclic adenosine 3',5'-monophosphate-dependent protein kinase. J Biol Chem. 1971 Dec 25;246(24):7731–7739. [PubMed] [Google Scholar]
  6. Kemp B. E., Froscio M., Murray A. W. Protein kinase activity in commercially available crystalline yeast alcohol dehydrogenase. Biochem J. 1973 Feb;131(2):271–274. doi: 10.1042/bj1310271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krebs E. G. Protein kinases. Curr Top Cell Regul. 1972;5:99–133. [PubMed] [Google Scholar]
  8. Murray K., Milstein C. Esters of serine and threonine in hydrolysates of histones and protamines, and attendant errors in amino acid analyses of proteins. Biochem J. 1967 Nov;105(2):491–495. doi: 10.1042/bj1050491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Trauch J. A., Mumby M., Traut R. R. Phosphorylation of ribosomal proteins by substrate-specific protein kinases from rabbit reticulocytes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):373–376. doi: 10.1073/pnas.70.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Walsh D. A., Perkins J. P., Krebs E. G. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968 Jul 10;243(13):3763–3765. [PubMed] [Google Scholar]
  11. Weller M., Rodnight R. Protein kinase activity in membrane preparations from ox brain. Stimulation of intrinsic activity by adenosine 3':5'-cyclic monophosphate. Biochem J. 1973 Mar;132(3):483–492. doi: 10.1042/bj1320483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES