Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Dec;135(4):617–630. doi: 10.1042/bj1350617

A comparison of the physical and chemical properties of four cytochromes c from Azotobacter vinelandii

Wilbur H Campbell 1, William H Orme-Johnson 1, Robert H Burris 1
PMCID: PMC1165876  PMID: 4360247

Abstract

1. A modified method for the separation and purification of four cytochromes c from Azotobacter vinelandii is described. Two new cytochromes c have been purified and are designated cytochromes c(551) and c(555). 2. Additional evidence is presented to establish the dihaem nature of cytochrome c4. Ultracentrifugation data indicated similar molecular weights for the native and the denatured protein. Cleavage with CNBr yielded seven peptides; the amino acid compositions of the purified peptides were determined. Only one haem peptide was recovered. 3. Cytochromes c(551) and c(555) were characterized as acidic proteins of molecular weights about 12000. The spectral properties, isoelectric points, `maps' of peptides from CNBr cleavage and amino acid compositions were determined for these two proteins. 4. The spectral properties, isoelectric points, molecular weights, CNBr peptide `maps', amino acid compositions, relative oxidation–reduction potentials and e.p.r. (electron-paramagnetic-resonance) spectra of the four cytochromes c were compared. Cytochrome c4 and cytochrome c(551) appear to be distinct proteins. The distinction between cytochromes c5 and c(555) was not as clear, and our data are inadequate to establish firmly that they are distinct proteins. 5. The dihaem nature of cytochrome c4 is evident in its e.p.r. spectrum. The e.p.r. spectra are similar to the spectra of mammalian cytochromes c.

Full text

PDF
617

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEINERT H., PALMER G. OXIDATION-REDUCTION OF THE COPPER COMPONENT OF CYTOCHROME OXIDASE. KINETIC STUDIES WITH A RAPID FREEZING TECHNIQUE. J Biol Chem. 1964 Apr;239:1221–1227. [PubMed] [Google Scholar]
  3. BLACKBURN S., LOWTHER A. G. The separation of N-2:4-dinitrophenly amino-acids on paper chromatograms. Biochem J. 1951 Jan;48(1):126–128. doi: 10.1042/bj0480126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURRIS R. H., TISSIERES A. Purification and properties of cytochromes C4 and C5 from Azotobacter vinelandii. Biochim Biophys Acta. 1956 May;20(2):436–437. doi: 10.1016/0006-3002(56)90331-6. [DOI] [PubMed] [Google Scholar]
  5. Bartsch R. G. Bacterial cytochromes. Annu Rev Microbiol. 1968;22:181–200. doi: 10.1146/annurev.mi.22.100168.001145. [DOI] [PubMed] [Google Scholar]
  6. Dervartanian D. V., Shethna Y. I., Beinert H. Purification and properties of two iron-sulfur proteins from Azotobacter vinelandii. Biochim Biophys Acta. 1969 Dec 23;194(2):548–563. doi: 10.1016/0005-2795(69)90117-2. [DOI] [PubMed] [Google Scholar]
  7. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  8. Dunker A. K., Rueckert R. R. Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem. 1969 Sep 25;244(18):5074–5080. [PubMed] [Google Scholar]
  9. FRAENKEL-CONRAT H., HARRIS J. I., LEVY A. L. Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal. 1955;2:359–425. doi: 10.1002/9780470110188.ch12. [DOI] [PubMed] [Google Scholar]
  10. HIRS C. H., MOORE S., STEIN W. H. Peptides obtained by tryptic hydrolysis of performic acid-oxidized ribonuclease. J Biol Chem. 1956 Apr;219(2):623–642. [PubMed] [Google Scholar]
  11. HYNDMAN L. A., BURRIS R. H., WILSON P. W. Properties of hydrogenase from Azotobacter vinelandii. J Bacteriol. 1953 May;65(5):522–531. doi: 10.1128/jb.65.5.522-531.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heller J., Smith E. L. Neurospora crassa cytochrome c. I. Purification, physical properties, amino acid composition, and peptide maps from "wild type" and "poky" strains. J Biol Chem. 1966 Jul 10;241(13):3158–3164. [PubMed] [Google Scholar]
  13. Horio T., Kamen M. D. Bacterial cytochromes. II. Functional aspects. Annu Rev Microbiol. 1970;24:399–428. doi: 10.1146/annurev.mi.24.100170.002151. [DOI] [PubMed] [Google Scholar]
  14. Kamen M. D., Horio T. Bacterial cytochromes. I. Structural aspects. Annu Rev Biochem. 1970;39:673–700. doi: 10.1146/annurev.bi.39.070170.003325. [DOI] [PubMed] [Google Scholar]
  15. Le Gall J., Bruschi-Heriaud M., DerVartanian D. V. Electron paramagnetic resonance and light absorption studies on c-type cytochromes of the anaerobic sulfate reducer Desulfovibrio. Biochim Biophys Acta. 1971 Jun 15;234(3):499–512. doi: 10.1016/0005-2728(71)90216-7. [DOI] [PubMed] [Google Scholar]
  16. MARGOLIASH E., KIMMEL J. R., HILL R. L., SCHMIDT W. R. Amino acid composition of horse heart cytochrome c. J Biol Chem. 1962 Jul;237:2148–2150. [PubMed] [Google Scholar]
  17. MARGOLIASH E., LUSTGARTEN J. Interconversion of horse heart cytochrome C monomer and polymers. J Biol Chem. 1962 Nov;237:3397–3405. [PubMed] [Google Scholar]
  18. MARGOLIASH E., SMITH E. L. Isolation and amino acid composition of chymotryptic peptides from horse heart cytochrome c. J Biol Chem. 1962 Jul;237:2151–2160. [PubMed] [Google Scholar]
  19. Margoliash E., Schejter A. Cytochrome c. Adv Protein Chem. 1966;21:113–286. doi: 10.1016/s0065-3233(08)60128-x. [DOI] [PubMed] [Google Scholar]
  20. NEUMANN N. P., BURRIS R. H. Cytochromes c4 and c5 of Azotobacter vinelandii: chromatographic purification, crystallization, and a study of their physical properties. J Biol Chem. 1959 Dec;234:3286–3290. [PubMed] [Google Scholar]
  21. NEWTON J. W., WILSON P. W., BURRIS R. H. Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J Biol Chem. 1953 Sep;204(1):445–451. [PubMed] [Google Scholar]
  22. Orme-Johson W. H., Beinert H. Anaerobic reductive titrations with solid diluted sodium dithionite in an apparatus suitable for EPR spectroscopy. Anal Biochem. 1969 Dec;32(3):425–435. doi: 10.1016/s0003-2697(69)80010-2. [DOI] [PubMed] [Google Scholar]
  23. PALMER G., BEINERT H. DIFFUSE REFLECTANCE SPECTROSCOPY OF FROZEN SAMPLES AS AN ADJUNCT TO LOW-TEMPERATURE ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. Anal Biochem. 1964 May;8:95–103. doi: 10.1016/0003-2697(64)90172-1. [DOI] [PubMed] [Google Scholar]
  24. POSTGATE J. R. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol. 1956 Jul;14(3):545–572. doi: 10.1099/00221287-14-3-545. [DOI] [PubMed] [Google Scholar]
  25. SCHEJTER A., GEORGE P. THE 695-MMM. BAND OF FERRICYTOCHROME C AND ITS RELATIONSHIP TO PROTEIN CONFORMATION. Biochemistry. 1964 Aug;3:1045–1049. doi: 10.1021/bi00896a006. [DOI] [PubMed] [Google Scholar]
  26. SCHEJTER A., GLAUSER S. C., GEORGE P., MARGOLIASH E. SPECTRA OF CYTOCHROME C MONOMER AND POLYMERS. Biochim Biophys Acta. 1963 Aug 6;73:641–643. doi: 10.1016/0006-3002(63)90334-2. [DOI] [PubMed] [Google Scholar]
  27. STEERS E., Jr, CRAVEN G. R., ANFINSEN C. B., BETHUNE J. L. EVIDENCE FOR NONIDENTICAL CHAINS IN THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2478–2484. [PubMed] [Google Scholar]
  28. Salmeen I., Palmer G. Electron paramagnetic resonance of beef-heart ferricytochrome c. J Chem Phys. 1968 Mar 1;48(5):2049–2052. doi: 10.1063/1.1669014. [DOI] [PubMed] [Google Scholar]
  29. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  30. Swank R. T., Burris R. H. Purification and properties of cytochromes c of Azotobacter vinelandii. Biochim Biophys Acta. 1969 Aug 5;180(3):473–489. doi: 10.1016/0005-2728(69)90026-7. [DOI] [PubMed] [Google Scholar]
  31. TISSIERES A. Purification, some properties and the specific biological activity of cytochromes c4 and c5 from Azotobacter vinelandii. Biochem J. 1956 Nov;64(3):582–589. doi: 10.1042/bj0640582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Theorell H., Akesson A. ABSORPTION SPECTRUM OF FURTHER PURIFIED CYTOCHROME C. Science. 1939 Jul 21;90(2325):67–67. doi: 10.1126/science.90.2325.67. [DOI] [PubMed] [Google Scholar]
  33. VERNON L. P., KAMEN M. D. Hematin compounds in photosynthetic bacteria. J Biol Chem. 1954 Dec;211(2):643–662. [PubMed] [Google Scholar]
  34. Van de Bogart M., Beinert H. Micro methods for the quantitative determination of iron and copper in biological material. Anal Biochem. 1967 Aug;20(2):325–334. doi: 10.1016/0003-2697(67)90038-3. [DOI] [PubMed] [Google Scholar]
  35. Vesterberg O., Svensson H. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta Chem Scand. 1966;20(3):820–834. doi: 10.3891/acta.chem.scand.20-0820. [DOI] [PubMed] [Google Scholar]
  36. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES