Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Dec;135(4):845–851. doi: 10.1042/bj1350845

Nucleotide sequence analyses of the cytoplasmic 5S ribosomal ribonucleic acid from five species of flowering plants

P I Payne 1, M J Corry 1, T A Dyer 1
PMCID: PMC1165903  PMID: 4778279

Abstract

Broad-bean 5S rRNA labelled with 32P was digested separately with T1 and pancreatic A ribonucleases and the resulting oligonucleotides (20 and 18 respectively) were fractionated by two-dimensional electrophoresis. The oligonucleotides were analysed further and 32 of them have been completely sequenced. They were compared with those of 5S rRNA from dwarf bean, sunflower, tomato and rye. Sequence differences were found at both the 3′- and 5′-termini and at up to nine other positions. Most base substitutions were transitions between C and U. In common with other 5S rRNA species that have been analysed the ends of the molecule in each plant species have complementary sequences.

Full text

PDF
845

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Averner M. J., Pace N. R. The nucleotide sequence of marsupial 5 S ribosomal ribonucleic acid. J Biol Chem. 1972 Jul 25;247(14):4491–4493. [PubMed] [Google Scholar]
  2. Bachvaroff R. J., Tongur V. 5S ribonucleic acid in ribosomes from mammalian tissues. Nature. 1966 Jul 16;211(5046):248–250. doi: 10.1038/211248a0. [DOI] [PubMed] [Google Scholar]
  3. Brownlee G. G., Cartwright E., McShane T., Williamson R. The nucleotide sequence of somatic 5 S RNA from Xenopus laevis. FEBS Lett. 1972 Sep 1;25(1):8–12. doi: 10.1016/0014-5793(72)80442-3. [DOI] [PubMed] [Google Scholar]
  4. Brownlee G. G., Sanger F., Barrell B. G. The sequence of 5 s ribosomal ribonucleic acid. J Mol Biol. 1968 Jun 28;34(3):379–412. doi: 10.1016/0022-2836(68)90168-x. [DOI] [PubMed] [Google Scholar]
  5. Forget B. G., Weissman S. M. Nucleotide sequence of KB cell 5S RNA. Science. 1967 Dec 29;158(3809):1695–1699. doi: 10.1126/science.158.3809.1695. [DOI] [PubMed] [Google Scholar]
  6. Hastings J. R., Kirby K. S. The nucleic acids of Drosophila melanogaster. Biochem J. 1966 Aug;100(2):532–539. doi: 10.1042/bj1000532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hindley J., Page S. M. Nucleotide sequence of yeast 5 S ribosomal RNA. FEBS Lett. 1972 Oct 1;26(1):157–160. doi: 10.1016/0014-5793(72)80563-5. [DOI] [PubMed] [Google Scholar]
  8. JOHNSTON F. B., STERN H. Mass isolation of viable wheat embryos. Nature. 1957 Jan 19;179(4551):160–161. doi: 10.1038/179160b0. [DOI] [PubMed] [Google Scholar]
  9. Loening U. E. The determination of the molecular weight of ribonucleic acid by polyacrylamide-gel electrophresis. The effects of changes in conformation. Biochem J. 1969 Jun;113(1):131–138. doi: 10.1042/bj1130131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Payne P. I., Dyer T. A. The isolation of 5-S ribosomal RNA from plants. Biochim Biophys Acta. 1971 Jan 1;228(1):167–172. doi: 10.1016/0005-2787(71)90556-9. [DOI] [PubMed] [Google Scholar]
  11. Vogel F. Non-randomness of base replacement in point mutation. J Mol Evol. 1972;1(3):334–367. doi: 10.1007/BF01653962. [DOI] [PubMed] [Google Scholar]
  12. Williamson R., Brownlee G. G. The sequence of 5S ribosomal RNA from two mouse cell lines. FEBS Lett. 1969 Jun;3(5):306–308. doi: 10.1016/0014-5793(69)80163-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES