Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Sep;136(1):157–171. doi: 10.1042/bj1360157

Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria

P C Holland 1,*, H S A Sherratt 1
PMCID: PMC1165935  PMID: 4772622

Abstract

1. The synthesis of pent-4-enoyl-l-carnitine, cyclopropanecarbonyl-l-carnitine and cyclobutanecarbonyl-l-carnitine is described. 2. Pent-4-enoate strongly inhibits palmitoyl-l-carnitine oxidation in coupled but not in uncoupled mitochondria. Pent-4-enoyl-l-carnitine strongly inhibits palmitoyl-l-carnitine oxidation in uncoupled mitochondria. Prior intramitochondrial formation of pent-4-enoyl-CoA is therefore necessary for inhibition. 3. There was a small self-limiting pulse of oxidation of pent-4-enoyl-l-carnitine during which the ability to inhibit the oxidation of subsequently added palmitoyl-l-carnitine developed. 4. Pent-4-enoate and pent-4-enoyl-l-carnitine are equally effective inhibitors of the oxidation of all even-chain acylcarnitines of chain length C4–C16. Pent-4-enoyl-l-carnitine also inhibits the oxidation of pyruvate and of 2-oxoglutarate. 5. Pent-4-enoate strongly inhibits the oxidation of palmitate but not that of octanoate. This is presumably due to competition between octanoate and pent-4-enoate for medium-chain acyl-CoA ligase. 6. There was less inhibition of the oxidation of pyruvate by pent-4-enoyl-l-carnitine, and of palmitoyl-l-carnitine by cyclopropanecarbonyl-l-carnitine, after pre-incubation with 10mm-arsenate. This suggests that these inhibitions were caused either by depletion of free CoA or by increase of acyl-CoA concentrations, since arsenate deacylates intramitochondrial acyl-CoA. There was little effect on the inhibition of palmitoyl-l-carnitine oxidation by pent-4-enoyl-l-carnitine. 7. Penta-2,4-dienoate strongly inhibited palmitoyl-l-carnitine oxidation in coupled mitochondria; acrylate only inhibited slightly. 8. Pent-4-enoate (0.1mm) caused a rapid and almost complete decrease in free CoA and a large increase in acid-soluble acyl-CoA when incubated with coupled mitochondria. Cyclopropanecarboxylate caused a similar decrease in CoA, with an equivalent rise in acid-soluble acyl-CoA concentrations. n-Pentanoate caused extensive lowering of CoA and a large increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. Octanoate caused a 50% lowering of CoA and an increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. 9. Cyclopropanecarboxylate and n-pentanoate were less potent inhibitors of palmitate oxidation than was pent-4-enoate. 10. It is concluded that pent-4-enoate causes a specific inhibition of β-oxidation after the formation intramitochondrially of its metabolites.

Full text

PDF
157

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allred J. B., Guy D. G. Determination of coenzyme A and acetyl CoA in tissue extracts. Anal Biochem. 1969 May;29(2):293–299. doi: 10.1016/0003-2697(69)90312-1. [DOI] [PubMed] [Google Scholar]
  2. Bohmer T., Bremer J. Propionylcarnitine. Physiological variations in vivo. Biochim Biophys Acta. 1968 May 1;152(3):559–567. doi: 10.1016/0005-2760(68)90096-9. [DOI] [PubMed] [Google Scholar]
  3. Bremer J. Comparison of acylcarnitines and pyruvate as substrates for rat-liver mitochondria. Biochim Biophys Acta. 1966 Feb 1;116(1):1–11. doi: 10.1016/0005-2760(66)90087-7. [DOI] [PubMed] [Google Scholar]
  4. Brendel K., Corredor C. F., Bressler R. The effect of 4-pentenoic acid on fatty acid oxidation. Biochem Biophys Res Commun. 1969 Feb 7;34(3):340–347. doi: 10.1016/0006-291x(69)90838-9. [DOI] [PubMed] [Google Scholar]
  5. Bressler R., Corredor C., Brendel K. Hypoglycin and hypoglycin-like compounds. Pharmacol Rev. 1969 Jun;21(2):105–130. [PubMed] [Google Scholar]
  6. CHEN K. K., ANDERSON R. C., McCOWEN M. C., HARRIS P. N. Pharmacologic action of hypoglycin A and B. J Pharmacol Exp Ther. 1957 Nov;121(3):272–285. [PubMed] [Google Scholar]
  7. Chase J. F., Tubbs P. K. Some kinetic studies on the mechanism of action of carnitine acetyltransferase. Biochem J. 1966 Apr;99(1):32–40. doi: 10.1042/bj0990032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chase J. F., Tubbs P. K. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters. Biochem J. 1972 Aug;129(1):55–65. doi: 10.1042/bj1290055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ciman M., Rossi C. R., Siliprandi N. On the mechanism of the antiketogenic action of propionate and succinate in isolated rat liver mitochondria. FEBS Lett. 1972 Apr 15;22(1):8–10. doi: 10.1016/0014-5793(72)80205-9. [DOI] [PubMed] [Google Scholar]
  10. Corredor C., Brendel K., Bressler R. Effects of 4-pentenoic acid on carbohydrate metabolism in pigeon liver homogenate. J Biol Chem. 1969 Mar 10;244(5):1212–1219. [PubMed] [Google Scholar]
  11. Corredor C., Brendel K., Bressler R. Studies of the mechanism of the hypoglycemic action of 4-pentenoic acid. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2299–2306. doi: 10.1073/pnas.58.6.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duncombe W. G., Rising T. J. Biosynthesis of cyclopropyl long-chain fatty acids from cyclopropanecarboxylic acid by mammalian tissues in vitro. Biochem J. 1968 Sep;109(3):449–455. doi: 10.1042/bj1090449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Entman M., Bressler R. The mechanism of action of hypoglycin on long-chain fatty acid oxidation. Mol Pharmacol. 1967 Jul;3(4):333–340. [PubMed] [Google Scholar]
  14. FRIEDMAN S., MCFARLANE J. E., BHATTACHARYYA P. K., FRAENKEL G. Quantitative separation and identification of quaternary ammonium bases. Arch Biochem Biophys. 1955 Dec;59(2):484–490. doi: 10.1016/0003-9861(55)90514-2. [DOI] [PubMed] [Google Scholar]
  15. FRITZ I. B., YUE K. T. LONG-CHAIN CARNITINE ACYLTRANSFERASE AND THE ROLE OF ACYLCARNITINE DERIVATIVES IN THE CATALYTIC INCREASE OF FATTY ACID OXIDATION INDUCED BY CARNITINE. J Lipid Res. 1963 Jul;4:279–288. [PubMed] [Google Scholar]
  16. Fukami M. H., Williamson J. R. On the mechanism of inhibition of fatty acid oxidation by 4-pentenoic acid in rat liver mitochondria. J Biol Chem. 1971 Mar 10;246(5):1206–1212. [PubMed] [Google Scholar]
  17. Galzigna L., Rossi C. R., Sartorelli L., Gibson D. M. A guanosine triphosphate-dependent acyl coenzyme A synthetase from rat liver mitochondria. J Biol Chem. 1967 May 10;242(9):2111–2115. [PubMed] [Google Scholar]
  18. Garland P. B. Control of citrate synthesis in mitochondria. Biochem Soc Symp. 1968;27:41–60. [PubMed] [Google Scholar]
  19. Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Garland P. B., Yates D. W., Haddock B. A. Spectrophotometric studies of acyl-coenzyme A synthetases of rat liver mitochondria. Biochem J. 1970 Sep;119(3):553–564. doi: 10.1042/bj1190553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holland P. C., Senior A. E., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation. Biochem J. 1973 Sep;136(1):173–184. doi: 10.1042/bj1360173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levitsky D. O., Skulachev V. P. Carnitine: the carrier transporting fatty acyls into mitochondria by means of an electrochemical gradient of H + . Biochim Biophys Acta. 1972 Jul 12;275(1):33–50. doi: 10.1016/0005-2728(72)90022-9. [DOI] [PubMed] [Google Scholar]
  23. MAHLER H. R., WAKIL S. J., BOCK R. M. Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J Biol Chem. 1953 Sep;204(1):453–468. [PubMed] [Google Scholar]
  24. Marley J., Sherratt H. S. The apparent failure of L-carnitine to prevent the hypoglycaemia and hypothermia caused by hypoglycin or by pent-4-enoic acid in mice. Biochem Pharmacol. 1973 Jan 15;22(2):281–284. doi: 10.1016/0006-2952(73)90284-0. [DOI] [PubMed] [Google Scholar]
  25. RENDINA G., COON M. J. Enzymatic hydrolysis of the coenzyme a thiol esters of beta-hydroxypropionic and beta-hydroxyisobutyric acids. J Biol Chem. 1957 Mar;225(1):523–534. [PubMed] [Google Scholar]
  26. Ruderman N., Shafrir E., Bressler R. Relation of fatty acid oxidation tgluconeogenesis: effect of pentenoic acid. Life Sci. 1968 Oct 15;7(20):1083–1089. doi: 10.1016/0024-3205(68)90145-8. [DOI] [PubMed] [Google Scholar]
  27. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  28. STRACK E., LORENZ I. Zur Bestimmung des Carnitins. Hoppe Seylers Z Physiol Chem. 1954;298(1-2):27–33. [PubMed] [Google Scholar]
  29. Senior A. E., Robson B., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent--4-enoic acid and related non-hypoglycaemic fatty acids. Biochem J. 1968 Dec;110(3):511–519. doi: 10.1042/bj1100511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Senior A. E., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Carbohydrate metabolism. Biochem J. 1968 Dec;110(3):521–527. doi: 10.1042/bj1100521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Senior A. E., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Oxidative phosphorylation and mitochondrial oxidation of pyruvate, 3-hydroxybutyrate and tricarboxylic acid-cycle intermediates. Biochem J. 1968 Dec;110(3):499–509. doi: 10.1042/bj1100499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stucki J. W., Brawand F., Walter P. Regulation of pyruvate metabolim in rat-liver mitochondria by adenine nucleotides and fatty acids. Eur J Biochem. 1972 May;27(1):181–191. doi: 10.1111/j.1432-1033.1972.tb01824.x. [DOI] [PubMed] [Google Scholar]
  33. Tanaka K., Isselbacher K. J., Shih V. Isovaleric and -methylbutyric acidemias induced by hypoglycin A: mechanism of Jamaican vomiting sickness. Science. 1972 Jan 7;175(4017):69–71. doi: 10.1126/science.175.4017.69. [DOI] [PubMed] [Google Scholar]
  34. Toews C. J., Lowy C., Ruderman N. B. The regulation of gluconeogenesis. The effect of pent-4-enoic acid on gluconeogenesis and on the gluconeogenic metabolite concentrations of isolated perfused rat liver. J Biol Chem. 1970 Feb 25;245(4):818–824. [PubMed] [Google Scholar]
  35. VAGELOS P. R., EARL J. M., STADTMAN E. R. Propionic acid metabolism. II. Enzymatic synthesis of lactyl pantethine. J Biol Chem. 1959 Apr;234(4):765–769. [PubMed] [Google Scholar]
  36. Von Holt C. Methylenecyclopropaneacetic acid, a metabolite of hypoglycin. Biochim Biophys Acta. 1966 Aug 3;125(1):1–10. doi: 10.1016/0005-2760(66)90138-x. [DOI] [PubMed] [Google Scholar]
  37. West D. W., Chase J. F., Tubbs P. K. The separation and properties of two forms of carnitine palmitoyltransferase from ox liver mitochondria. Biochem Biophys Res Commun. 1971 Mar 5;42(5):912–918. doi: 10.1016/0006-291x(71)90517-1. [DOI] [PubMed] [Google Scholar]
  38. Williamson J. R., Fukami M. H., Peterson M. J., Rostand S. G., Scholz R. Effect of 4-pentenoic acid on coenzyme A metabolites in rat liver. Biochem Biophys Res Commun. 1969 Aug 7;36(3):407–413. doi: 10.1016/0006-291x(69)90579-8. [DOI] [PubMed] [Google Scholar]
  39. Williamson J. R., Rostand S. G., Peterson M. J. Control factors affecting gluconeogenesis in perfused rat liver. Effects of 4-pentenoic acid. J Biol Chem. 1970 Jun;245(12):3242–3251. [PubMed] [Google Scholar]
  40. Yardley H. J., Godfrey G. Some in vitro effects of hypoglycin on skin. Arch Dermatol. 1967 Jul;96(1):89–93. [PubMed] [Google Scholar]
  41. Ziegler H. J., Bruckner P., Binon F. O-acylation of dl-carnitine chloride. J Org Chem. 1967 Dec;32(12):3989–3991. doi: 10.1021/jo01287a057. [DOI] [PubMed] [Google Scholar]
  42. van Tol A., de Jong J. W., Hulsmann W. C. On fatty acid activation in rat liver mitochondria. Biochim Biophys Acta. 1969 Mar 4;176(2):414–416. doi: 10.1016/0005-2760(69)90200-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES