Abstract
1. The two well-known methods of estimating rates of irreversible disposal (R) of blood-borne substrates in vivo by isotope experiments involve estimating the specific radioactivity (S) of the substrate in blood either after single intravenous injection of labelled substrate or during its infusion at a constant rate. The value of R is calculated from the S–time curve, usually by assuming: (i) a metabolic steady state with respect to substrate, (ii) the passage of all substrate through the blood, and (iii) the absence of certain types of recycling via blood. 2. In a theoretical investigation we show how experiments can be performed and R calculated from analyses of blood when one or more of the above assumptions is unjustified, by using glucose, ketone bodies, plasma free fatty acids and proteins as examples. In general the methods require single injection procedures, with estimation of the total quantity of label in the substrate in blood and the substrate concentration instead of only S. Such values give estimates of R with standard errors even when only one blood specimen is taken from each of a group of animals, as is convenient when working with small animals or substrates in low concentration, and when the animals are in a non-steady state in which constant infusion procedures are invalid. 3. Similar methods give the fraction of label injected as one compound which passes through another (the isotopic yield). 4. The methods are not always applicable, and cannot be applied to plasma proteins in some pathological conditions. A questionnaire for assessing their applicability is given.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashby M. M., Heath D. F., Stoner H. B. A quantitative study of carbohydrate metabolism in the normal and injured rat. J Physiol. 1965 Jul;179(2):193–237. doi: 10.1113/jphysiol.1965.sp007658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkins G. L. A versatile digital computer program for non-linear regression analysis. Biochim Biophys Acta. 1971 Dec 21;252(3):405–420. doi: 10.1016/0304-4165(71)90142-5. [DOI] [PubMed] [Google Scholar]
- Atkins G. L. Investigation of some theoretical models relating the concentrations of glucose and insulin in plasma. J Theor Biol. 1971 Sep;32(3):471–494. doi: 10.1016/0022-5193(71)90152-4. [DOI] [PubMed] [Google Scholar]
- BAKER N., SHIPLEY R. A., CLARK R. E., INCEFY G. E. C14 studies in carbohydrate metabolism: glucose pool size and rate of turnover in the normal rat. Am J Physiol. 1959 Feb;196(2):245–252. doi: 10.1152/ajplegacy.1959.196.2.245. [DOI] [PubMed] [Google Scholar]
- BRESSLER R. The biochemistry of ketosis. Ann N Y Acad Sci. 1963 Mar 5;104:735–752. doi: 10.1111/j.1749-6632.1963.tb17705.x. [DOI] [PubMed] [Google Scholar]
- Baker N., Rostami H. Effect of glucose feeding on net transport of plasma free fatty acids. J Lipid Res. 1969 Jan;10(1):83–90. [PubMed] [Google Scholar]
- Baker N. The use of computers to study rates of lipid metabolism. J Lipid Res. 1969 Jan;10(1):1–24. [PubMed] [Google Scholar]
- Barton R. N. The interconversion and disposal of ketone bodies in untreated and injured post-absorptive rats. Biochem J. 1973 Nov;136(3):531–543. doi: 10.1042/bj1360531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates M. W. Kinetics of ketone body metabolism in fasted and diabetic rats. Am J Physiol. 1971 Oct;221(4):984–991. doi: 10.1152/ajplegacy.1971.221.4.984. [DOI] [PubMed] [Google Scholar]
- Besch E. L., Chou B. J., Cornelius C. E. Physiological responses to blood collection methods in rats. Proc Soc Exp Biol Med. 1971 Dec;138(3):1019–1021. doi: 10.3181/00379727-138-36041. [DOI] [PubMed] [Google Scholar]
- Boberg J. Turnover of H3-labelled palmitate in the unanesthetized rat. Acta Physiol Scand. 1969 Aug;76(4):495–502. doi: 10.1111/j.1748-1716.1969.tb04496.x. [DOI] [PubMed] [Google Scholar]
- CLAMP J. R., HOUGH L. THE PERIODATE OXIDATION OF AMINO ACIDS WITH REFERENCE TO STUDIES ON GLYCOPROTEINS. Biochem J. 1965 Jan;94:17–24. doi: 10.1042/bj0940017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corney P. L., Heath D. F. A simple way of estimating turnover rates from specific activity--time curves. J Appl Physiol. 1970 May;28(5):672–674. doi: 10.1152/jappl.1970.28.5.672. [DOI] [PubMed] [Google Scholar]
- Cunningham V. J. The irreversible disposal rate of free fatty acids in the plasma of fed and starved rats. Biochem J. 1973 Nov;136(3):545–550. doi: 10.1042/bj1360545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE BODO R. C., ALTSZULER N., DUNN A., STEELE R., ARMSTRONG D. T., BISHOP J. S. Effects of exogenous and endogenous insulin on glucose utilization and production. Ann N Y Acad Sci. 1959 Sep 25;82:431–451. doi: 10.1111/j.1749-6632.1959.tb44924.x. [DOI] [PubMed] [Google Scholar]
- DEPOCAS F. REGULATION OF GLUCOSE OXIDATION IN THE WHITE RAT. Am J Physiol. 1964 Jan;206:113–118. doi: 10.1152/ajplegacy.1964.206.1.113. [DOI] [PubMed] [Google Scholar]
- GURPIDE E., MANN J., LIEBERMAN S. ANALYSIS OF OPEN SYSTEMS OF MULTIPLE POOLS BY ADMINISTRATION OF TRACERS AT A CONSTANT RATE OR AS A SINGLE DOSE AS ILLUSTRATED BY PROBLEMS INVOLVING STEROID HORMONES. J Clin Endocrinol Metab. 1963 Nov;23:1155–1176. doi: 10.1210/jcem-23-11-1155. [DOI] [PubMed] [Google Scholar]
- Heath D. F., Corney P. L. The effects of starvation, environmental temperature and injury on the rate of disposal of glucose by the rat. Biochem J. 1973 Nov;136(3):519–530. doi: 10.1042/bj1360519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., George D. R., Rose J. G. The effects of the stress caused by experimental procedures on alanine, aspartate, glutamate and glutamine in rat liver. Biochem J. 1971 Dec;125(3):765–771. doi: 10.1042/bj1250765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., Rose J. G. The distribution of glucose and [14C]glucose between erythrocytes and plasma in the rat. Biochem J. 1969 Apr;112(3):373–377. doi: 10.1042/bj1120373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., Stoner H. B. Studies on the mechanism of shock. Non-esterified fatty acid metabolism in normal and injured rats. Br J Exp Pathol. 1968 Apr;49(2):160–169. [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., Threlfall C. J. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo. Biochem J. 1968 Nov;110(2):337–362. doi: 10.1042/bj1100337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horton R., Tait J. F. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. J Clin Invest. 1966 Mar;45(3):301–313. doi: 10.1172/JCI105344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A., Hems R., Weidemann M. J., Speake R. N. The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochem J. 1966 Oct;101(1):242–249. doi: 10.1042/bj1010242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
- MCFARLANE A. S., IRONS L., KOJ A., REGOECZI E. THE MEASUREMENT OF SYNTHESIS RATES OF ALBUMIN AND FIBRINOGEN IN RABBITS. Biochem J. 1965 May;95:536–540. doi: 10.1042/bj0950536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann J., Gurpide E. Generalized rates of transfer in open systems of pools in the steady state. J Clin Endocrinol Metab. 1966 Dec;26(12):1346–1354. doi: 10.1210/jcem-26-12-1346. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Guest M. J., Foster D. W. Ketone body metabolism in the ketosis of starvation and alloxan diabetes. J Biol Chem. 1970 Sep 10;245(17):4382–4390. [PubMed] [Google Scholar]
- Mouridsen H. T. The extravascular retention of albumin in wound tissue and its contribution to the postoperative hypoalbuminaemia in rabbits. Clin Sci. 1969 Oct;37(2):431–441. [PubMed] [Google Scholar]
- REICHARD G. A., FRIEDMANN B., MAASS A. R., WEINHOUSE S. Turnover rates of blood glucose in normal dogs during hyperglycemia induced by glucose or glucagon. J Biol Chem. 1958 Jan;230(1):387–397. [PubMed] [Google Scholar]
- Regoeczi E. Fibrinogen catabolism: kinetics of catabolism following sudden elevation of the pool with exogenous fibrinogen. Clin Sci. 1970 Jan;38(1):111–121. doi: 10.1042/cs0380111. [DOI] [PubMed] [Google Scholar]
- Rosing N. The normal metabolism of 131-I-labelled albumin in man. Clin Sci. 1967 Dec;33(3):593–602. [PubMed] [Google Scholar]
- Searle G. L., Cavalieri R. R. Determination of lactate kinetics in the human analysis of data from single injection vs. continuous infusion methods. Proc Soc Exp Biol Med. 1972 Mar;139(3):1002–1006. doi: 10.3181/00379727-139-36284. [DOI] [PubMed] [Google Scholar]
- Shipley R. A., Chudzik E. B., Gibbons A. P., Jongedyk K., Brummond D. O. Rate of glucose transformation in the rat by whole-body analysis after blucose-14-C. Am J Physiol. 1967 Nov;213(5):1149–1158. doi: 10.1152/ajplegacy.1967.213.5.1149. [DOI] [PubMed] [Google Scholar]
- TAIT J. F. REVIEW: THE USE OF ISOTOPIC STEROIDS FOR THE MEASUREMENT OF PRODUCTION RATES IN VIVO. J Clin Endocrinol Metab. 1963 Dec;23:1285–1297. doi: 10.1210/jcem-23-12-1285. [DOI] [PubMed] [Google Scholar]
- Williams T. F., Exton J. H., Park C. R., Regen D. M. Stereospecific transport of glucose in the perfused rat liver. Am J Physiol. 1968 Nov;215(5):1200–1209. doi: 10.1152/ajplegacy.1968.215.5.1200. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young D. A., Renold A. E. A fluorimetric procedure for the determination of ketone bodies in very small quantities of blood. Clin Chim Acta. 1966 Jun;13(6):791–793. doi: 10.1016/0009-8981(66)90151-3. [DOI] [PubMed] [Google Scholar]