Abstract
[3-14C]Acetoacetate and β-hydroxy[3-14C]butyrate were used to investigate the kinetics of ketone body metabolism in rats 3h after bilateral hind-limb ischaemia and in controls, both groups being in the post-absorptive state and in a 20°C environment. Calculations were carried out as described by Heath & Barton (1973) and the following conclusions were reached. 1. In both injured and control rats, the rates of irreversible disposal (extrahepatic utilization) of β-hydroxybutyrate and acetoacetate were proportional within experimental error to their blood concentrations up to at least 0.4mm (the maximum found in these rats), implying that they were determined, via these concentrations, by the rates of production by the liver. 2. Conversion of blood β-hydroxybutyrate into blood acetoacetate took place mainly in the liver, but the reverse process occurred mainly in extrahepatic tissues. 3. The `metabolic clearance rate' (the volume of blood which, if completely cleared of substrate in unit time, would give a disposal rate equal to that in the whole animal) was calculated for β-hydroxybutyrate and acetoacetate. Comparison with the cardiac output showed that in control rats the proportion of circulating β-hydroxybutyrate extracted was lower than that of acetoacetate, clearance of which appeared almost complete. After injury both metabolic clearance rates decreased, probably because of the lower cardiac output. 4. After injury, because the average blood concentrations of ketone bodies, especially acetoacetate, were higher, the mean total rate of disposal also increased. Assuming complete oxidation, the mean contribution of ketone bodies to the whole body O2 consumption rose from 7 to 15%.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashby M. M., Heath D. F., Stoner H. B. A quantitative study of carbohydrate metabolism in the normal and injured rat. J Physiol. 1965 Jul;179(2):193–237. doi: 10.1113/jphysiol.1965.sp007658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERGMAN E. N., KON K., KATZ M. L. QUANTITATIVE MEASUREMENTS OF ACETOACETATE METABOLISM AND OXIDATION IN SHEEP. Am J Physiol. 1963 Oct;205:658–662. doi: 10.1152/ajplegacy.1963.205.4.658. [DOI] [PubMed] [Google Scholar]
- Baker N., Rostami H. Effect of glucose feeding on net transport of plasma free fatty acids. J Lipid Res. 1969 Jan;10(1):83–90. [PubMed] [Google Scholar]
- Baker N. The use of computers to study rates of lipid metabolism. J Lipid Res. 1969 Jan;10(1):1–24. [PubMed] [Google Scholar]
- Balasse E. O., Havel R. J. Evidence for an effect of inulin on the peripheral utilization of ketone bodies in dogs. J Clin Invest. 1971 Apr;50(4):801–813. doi: 10.1172/JCI106551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton R. N. Ketone-body concentrations in liver and blood after limb ischaemia in the rat. Clin Sci. 1971 Jun;40(6):463–477. doi: 10.1042/cs0400463. [DOI] [PubMed] [Google Scholar]
- Bates M. W. Kinetics of ketone body metabolism in fasted and diabetic rats. Am J Physiol. 1971 Oct;221(4):984–991. doi: 10.1152/ajplegacy.1971.221.4.984. [DOI] [PubMed] [Google Scholar]
- Bates M. W., Krebs H. A., Williamson D. H. Turnover rates of ketone bodies in normal, starved and alloxan-diabetic rats. Biochem J. 1968 Dec;110(4):655–661. doi: 10.1042/bj1100655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bieberdorf F. A., Chernick S. S., Scow R. O. Effect of insulin and acute diabetes on plasma FFA and ketone bodies in the fasting rat. J Clin Invest. 1970 Sep;49(9):1685–1693. doi: 10.1172/JCI106386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bässler K. H., Wagner G., Heicke B. Dynamik des Ketonkörperstoffwechsels bei gesunden Ratten. Z Gesamte Exp Med. 1970;153(2):131–135. [PubMed] [Google Scholar]
- Corney P. L., Heath D. F. A simple way of estimating turnover rates from specific activity--time curves. J Appl Physiol. 1970 May;28(5):672–674. doi: 10.1152/jappl.1970.28.5.672. [DOI] [PubMed] [Google Scholar]
- Cremer J. E. Incorporation of label from D- -hydroxy( 14 C)butyrate and (3- 14 C)acetoacetate into amino acids in rat brain in vivo. Biochem J. 1971 Apr;122(2):135–138. doi: 10.1042/bj1220135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALL L. M. Preparation of crystalline lithium acetoacetate. Anal Biochem. 1962 Jan;3:75–80. doi: 10.1016/0003-2697(62)90046-5. [DOI] [PubMed] [Google Scholar]
- Hagenfeldt L., Wahren J. Human forearm muscle metabolism during exercise. 3. Uptake, release and oxidation of beta-hydroxybutyrate and observations on the beta-hydroxybutyrate/acetoacetate ratio. Scand J Clin Lab Invest. 1968;21(4):314–320. doi: 10.3109/00365516809076999. [DOI] [PubMed] [Google Scholar]
- Heath D. F., Barton R. N. The design of experiments using isotopes for the determination of the rates of disposal of blood-borne substrates in vivo with special reference to glucose, ketone bodies, free fatty acids and proteins. Biochem J. 1973 Nov;136(3):503–518. doi: 10.1042/bj1360503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., Corney P. L. The effects of starvation, environmental temperature and injury on the rate of disposal of glucose by the rat. Biochem J. 1973 Nov;136(3):519–530. doi: 10.1042/bj1360519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., Stoner H. B. Studies on the mechanism of shock. Non-esterified fatty acid metabolism in normal and injured rats. Br J Exp Pathol. 1968 Apr;49(2):160–169. [PMC free article] [PubMed] [Google Scholar]
- Heath D. F. The effect of scald injury upon the distribution of glucose between red cells and plasma and upon the turnover of glucose in red cells in the rat. Br J Exp Pathol. 1973 Aug;54(4):359–367. [PMC free article] [PubMed] [Google Scholar]
- Heath D. F., Threlfall C. J. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo. Biochem J. 1968 Nov;110(2):337–362. doi: 10.1042/bj1100337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraupp O., Adler-Kastner L., Kolassa N., Nell G., Plank B., Chirikdjian J. J. Arterial levels, cardiac and hepatic arteriovenous differences, extraction coefficients and oxygen extraction ratios of various substrates in normal, and in acute and chronic alloxan-diabetic dogs. Eur J Biochem. 1968 Oct 17;6(1):114–125. doi: 10.1111/j.1432-1033.1968.tb00427.x. [DOI] [PubMed] [Google Scholar]
- LEHNINGER A. L., SUDDUTH H. C., WISE J. B. D-beta-Hydroxybutyric dehydrogenase of muitochondria. J Biol Chem. 1960 Aug;235:2450–2455. [PubMed] [Google Scholar]
- LaNoue K., Nicklas W. J., Williamson J. R. Control of citric acid cycle activity in rat heart mitochondria. J Biol Chem. 1970 Jan 10;245(1):102–111. [PubMed] [Google Scholar]
- Leng R. A., Annison E. F. The metabolism of D(--)-beta-hydroxybutyrate in sheep. Biochem J. 1964 Mar;90(3):464–469. doi: 10.1042/bj0900464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayes P. A., Felts J. M. Determination of 14C-labelled ketone bodies by liquid-scintillation counting. Biochem J. 1967 Jan;102(1):230–235. doi: 10.1042/bj1020230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFARLANE A. S. Use of labelled plasma proteins in the study of nutritional problems. Prog Biophys Biophys Chem. 1957;7:115–163. [PubMed] [Google Scholar]
- McGarry J. D., Guest M. J., Foster D. W. Ketone body metabolism in the ketosis of starvation and alloxan diabetes. J Biol Chem. 1970 Sep 10;245(17):4382–4390. [PubMed] [Google Scholar]
- Owen O. E., Reichard G. A., Jr Human forearm metabolism during progressive starvation. J Clin Invest. 1971 Jul;50(7):1536–1545. doi: 10.1172/JCI106639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POPOVIC V. P., KENT K. M. 120-DAY STUDY OF CARDIAC OUTPUT IN UNANESTHETIZED RATS. Am J Physiol. 1964 Oct;207:767–770. doi: 10.1152/ajplegacy.1964.207.4.767. [DOI] [PubMed] [Google Scholar]
- POPOVIC V., POPOVIC P. Permanent cannulation of aorta and vena cava in rats and ground squirrels. J Appl Physiol. 1960 Jul;15:727–728. doi: 10.1152/jappl.1960.15.4.727. [DOI] [PubMed] [Google Scholar]
- RUDOLPH W., MAAS D., RICHTER J., HASINGER F., HOFMANN H., DOHRN P. UBER DIE BEDEUTUNG VON ACETACETAT UND BETA-HYDROXYBUTYRAT IM STOFFWECHSEL DES MENSCHLICHEN HERZENS. Klin Wochenschr. 1965 Apr 15;43:445–451. doi: 10.1007/BF01483852. [DOI] [PubMed] [Google Scholar]
- Stoner H. B. Studies on the mechanism of shock. The impariment of thermoregulation by trauma. Br J Exp Pathol. 1969 Apr;50(2):125–138. [PMC free article] [PubMed] [Google Scholar]
- TAIT J. F., LITTLE B., TAIT S. A., FLOOD C. The metabolic clearance rate of aldosterone in pregnant and nonpregnant subjects estimated by both single-injection and constant-infusion methods. J Clin Invest. 1962 Dec;41:2093–2100. doi: 10.1172/JCI104667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAIT J. F. REVIEW: THE USE OF ISOTOPIC STEROIDS FOR THE MEASUREMENT OF PRODUCTION RATES IN VIVO. J Clin Endocrinol Metab. 1963 Dec;23:1285–1297. doi: 10.1210/jcem-23-12-1285. [DOI] [PubMed] [Google Scholar]
- TAKACS L., KALLAY K., SKOLNIK J. H. Effect of tourniquet shock and acute hemorrhage on the circulation of various organs in the rat. Circ Res. 1962 May;10:753–757. doi: 10.1161/01.res.10.5.753. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whereat A. F., Chan A. Effects of hypoxemia and acute coronary occlusion on myocardial metabolism in dogs. Am J Physiol. 1972 Dec;223(6):1398–1406. doi: 10.1152/ajplegacy.1972.223.6.1398. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Bates M. W., Page M. A., Krebs H. A. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J. 1971 Jan;121(1):41–47. doi: 10.1042/bj1210041. [DOI] [PMC free article] [PubMed] [Google Scholar]