Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1973 Nov;136(3):551–563. doi: 10.1042/bj1360551

Plasma lipoproteins and the synthesis and turnover of plasma triglyceride in normal and genetically obese mice

D Michael W Salmon 1, Douglas A Hems 1
PMCID: PMC1165989  PMID: 4360712

Abstract

1. Lipoproteins in the plasma of mice were characterized by agarose-gel chromatography and polyacrylamide-gel electrophoresis: genetically obese (ob/ob) mice exhibited hyperlipoproteinaemia (compared with lean mice), largely owing to an increase in the concentration of cholesterol in high-density lipoprotein. Plasma concentrations of triglyceride and phospholipid were not markedly increased in genetically obese mice. 2. The formation of glycerolipids in liver and plasma was investigated with 14C-labelled precursors. The synthesis of hepatic triglyceride and phospholipid from glucose or palmitate was enhanced in ob/ob mice, compared with lean mice. The rate of entry of triglyceride into plasma, calculated from the time-course of incorporation of 14C from [14C]palmitate into plasma triglyceride, was increased in ob/ob mice (0.5μmol of fatty acid/min, compared with 0.2 in lean mice). 3. The removal from plasma of murine lipoprotein triglyceride-[14C]fatty acid was increased in ob/ob mice (half-time 2.2min, compared with 7.2min in lean mice). Similar results were obtained with an injected lipid emulsion (Intralipid). 4. From these measurements, estimates of the rates of turnover of plasma triglyceride in mice (fed on a mixed diet, female, 3 months old) are about 1.0μmol of fatty acid/min in ob/ob mice, and 0.25 in lean mice. 5. The major precursor of hepatic and plasma triglyceride in lean and ob/ob mice was calculated to be plasma free fatty acid. 6. These results are discussed, in connexion with the role of the liver in triglyceride metabolism in mice, especially in relation to genetic obesity.

Full text

PDF
551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R. R., Beloff-Chain A. Hormonal control of intermediary metabolism in obese hyperglycemic mice. I. The sensitivity and response to insulin in adipose tissue and muscle in vitro. Diabetes. 1971 Aug;20(8):522–534. doi: 10.2337/diab.20.8.522. [DOI] [PubMed] [Google Scholar]
  2. Abraham R. R., Dade E., Elliott J., Hems D. A. Hormonal control of intermediary metabolism in obese hyperglycemic mice. II. Levels of plasma free fatty acid and immunoreactive insulin and liver glycogen. Diabetes. 1971 Aug;20(8):535–541. doi: 10.2337/diab.20.8.535. [DOI] [PubMed] [Google Scholar]
  3. BAILLIE L. A. Determination of liquid scientillation counting efficiency by pulse height shift. Int J Appl Radiat Isot. 1960 May;8:1–7. doi: 10.1016/0020-708x(60)90153-8. [DOI] [PubMed] [Google Scholar]
  4. BAKER N., SCHOTZ M. C. USE OF MULTICOMPARTMENTAL MODELS TO MEASURE RATES OF TRIGLYCERIDE METABOLISM IN RATS. J Lipid Res. 1964 Apr;5:188–197. [PubMed] [Google Scholar]
  5. Barry W. S., Bray G. A. Plasma triglycerides in genetically obese rats. Metabolism. 1969 Oct;18(10):833–839. doi: 10.1016/0026-0495(69)90058-4. [DOI] [PubMed] [Google Scholar]
  6. Bickerstaffe R., Annison E. F. Lipid metabolism in the perfused chicken liver. The uptake and metabolism of oleic acid, elaidic acid, cis-vaccenic acid, trans-vaccenic acid and stearic acid. Biochem J. 1970 Jul;118(3):433–442. doi: 10.1042/bj1180433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Birkenhäger J. C., Tjabbes T. Turnover rate of plasma FFA and rate of esterification of plasma FFA to plasma triglycerides in obese humans before and after weight reduction. Metabolism. 1969 Jan;18(1):18–32. doi: 10.1016/0026-0495(69)90129-2. [DOI] [PubMed] [Google Scholar]
  8. Boberg J., Carlson L. A., Hallberg D. Application of a new intravenous fat tolerance test in the study of hypertriglyceridaemia in man. J Atheroscler Res. 1969 Mar-Apr;9(2):159–169. doi: 10.1016/s0368-1319(69)80051-7. [DOI] [PubMed] [Google Scholar]
  9. Bowden J. A., Fried M. Separation and characterization of rat plasma lipoproteins by molecular sieve chromatography. Comp Biochem Physiol. 1970 Feb 1;32(3):391–400. doi: 10.1016/0010-406x(70)90456-1. [DOI] [PubMed] [Google Scholar]
  10. Bray G. A., York D. A. Genetically transmitted obesity in rodents. Physiol Rev. 1971 Jul;51(3):598–646. doi: 10.1152/physrev.1971.51.3.598. [DOI] [PubMed] [Google Scholar]
  11. Chang H. C., Seidman I., Teebor G., Lane M. D. Liver acetyl CoA carboxylase and fatty acid synthetase: relative activities in the normal state and in hereditary obesity. Biochem Biophys Res Commun. 1967 Sep 7;28(5):682–686. doi: 10.1016/0006-291x(67)90369-5. [DOI] [PubMed] [Google Scholar]
  12. Christophe A., Matthijs F. New method for the determination of the fatty acid pattern of serum lipid classes. Clin Chim Acta. 1967 Apr;16(1):39–43. doi: 10.1016/0009-8981(67)90267-7. [DOI] [PubMed] [Google Scholar]
  13. Christophe J., Furnelle J., Boutry M., Winand J. Qualite des lipides et quantite des proteines synthetises in vivo par la souris normale et la souris obbése-hyperglycemique de Bar Harbor. Bull Soc Chim Biol (Paris) 1970 Apr 17;52(3):333–348. [PubMed] [Google Scholar]
  14. Elliott J., Hems D. A., Beloff-Chain A. Carbohydrate metabolism of the isolated perfused liver of normal and genetically obese--hyperglycaemic (ob-ob) mice. Biochem J. 1971 Dec;125(3):773–780. doi: 10.1042/bj1250773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Enser M. Clearing-factor lipase in obese hyperglycaemic mice (ob-ob). Biochem J. 1972 Sep;129(2):447–453. doi: 10.1042/bj1290447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FARQUHAR J. W., GROSS R. C., WAGNER R. M., REAVEN G. M. VALIDATION OF AN INCOMPLETELY COUPLED TWO-COMPARTMENT NONRECYCLING CATENARY MODEL FOR TURNOVER OF LIVER AND PLASMA TRIGLYCERIDE IN MAN. J Lipid Res. 1965 Jan;6:119–134. [PubMed] [Google Scholar]
  17. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  18. FRIEDBERG S. J., HARLAN W. R., Jr, TROUT D. L., ESTES E. H., Jr The effect of exercise on the concentration and turnover of plasma nonesterified fatty acids. J Clin Invest. 1960 Jan;39:215–220. doi: 10.1172/JCI104021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Faloona G. R., Stewart B. N., Fried M. An intermediate density lipoprotein of rat serum. Arch Biochem Biophys. 1969 Mar;130(1):680–683. doi: 10.1016/0003-9861(69)90088-5. [DOI] [PubMed] [Google Scholar]
  20. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  21. GUSTAFSON A., ALAUPOVIC P., FURMAN R. H. STUDIES OF THE COMPOSITION AND STRUCTURE OF SERUM LIPOPROTEINS: ISOLATION, PURIFICATION, AND CHARACTERIZATION OF VERY LOW DENSITY LIPOPROTEINS OF HUMAN SERUM. Biochemistry. 1965 Mar;4:596–605. doi: 10.1021/bi00879a033. [DOI] [PubMed] [Google Scholar]
  22. Gries F. A., Potthoff S., Jahnke K. The effect of insulin on the uptake of radioactive labelled plasma triglycerides by rat tissue in vivo. Diabetologia. 1967 Jun;3(3):311–317. doi: 10.1007/BF00429863. [DOI] [PubMed] [Google Scholar]
  23. Gross R. C., Eigenbrodt E. H., Farquhar J. W. Endogenous triglyceride turnover in liver and plasma of the dog. J Lipid Res. 1967 Mar;8(2):114–125. [PubMed] [Google Scholar]
  24. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hagenfeldt L., Wahren J., Pernow B., Räf L. Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest. 1972 Sep;51(9):2324–2330. doi: 10.1172/JCI107043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Havel R. J., Kane J. P., Balasse E. O., Segel N., Basso L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest. 1970 Nov;49(11):2017–2035. doi: 10.1172/JCI106422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. JACIN H., MISHKIN A. R. SEPARATION OF CARBOHYDRATES ON BORATE-IMPREGNATED SILICA GEL G PLATES. J Chromatogr. 1965 Apr;18:170–173. doi: 10.1016/s0021-9673(01)80341-1. [DOI] [PubMed] [Google Scholar]
  28. Jansen G. R., Zanetti M. E., Hutchison C. F. Studies on lipogenesis in vivo: Fatty acid and cholesterol synthesis in hyperglycaemic-obese mice. Biochem J. 1967 Mar;102(3):870–877. doi: 10.1042/bj1020870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LAURELL S. Recycling of intravenously injected palmitic acid-1-C14 as esterified fatty acid in the plasma of rats and turnover rate of plasma triglycerides. Acta Physiol Scand. 1959 Nov 15;47:218–232. doi: 10.1111/j.1748-1716.1960.tb00072.x. [DOI] [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Lewis B., Boberg L., Mancini M., Carlson L. A. Determination of the intravenous fat tolerance test with intralipid by nephelometry. Atherosclerosis. 1972 Jan-Feb;15(1):83–86. doi: 10.1016/0021-9150(72)90040-8. [DOI] [PubMed] [Google Scholar]
  32. MAYER J., JONES A. K. Hypercholesteremia in the hereditary obese-hyperglycemic syndrome of mice. Am J Physiol. 1953 Dec;175(3):339–342. doi: 10.1152/ajplegacy.1953.175.3.339. [DOI] [PubMed] [Google Scholar]
  33. Margolis S. Separation and size determination of human serum lipoproteins by agarose gel filtration. J Lipid Res. 1967 Sep;8(5):501–507. [PubMed] [Google Scholar]
  34. McDONALD H. J., RIBEIRO L. P. Ethylene and propylene glycol in the pre-staining of lipoproteins for electrophoresis. Clin Chim Acta. 1959 May;4(3):458–459. doi: 10.1016/0009-8981(59)90121-4. [DOI] [PubMed] [Google Scholar]
  35. Nakanishi S., Numa S. Synthesis and degradation of liver acetyl coenzyme A carboxylase in genetically obese mice. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2288–2292. doi: 10.1073/pnas.68.9.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Narayan K. A., Creinin H. L., Kummerow F. A. Disc electrophoresis of rat plasma lipoproteins. J Lipid Res. 1966 Jan;7(1):150–157. [PubMed] [Google Scholar]
  37. Nestel P. J., Whyte H. M. Plasma free fatty acid and triglyceride turnover in obesity. Metabolism. 1968 Dec;17(12):1122–1128. doi: 10.1016/0026-0495(68)90092-9. [DOI] [PubMed] [Google Scholar]
  38. Nichols A. V. Functions and interrelationships of different classes of plasma lipoproteins. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1128–1137. doi: 10.1073/pnas.64.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nikkilä E. A. Control of plasma and liver triglyceride kinetics by carbohydrate metabolism and insulin. Adv Lipid Res. 1969;7:63–134. doi: 10.1016/b978-0-12-024907-7.50009-9. [DOI] [PubMed] [Google Scholar]
  40. Pinter J. K., Hayashi J. A., Watson J. A. Enzymic assay of glycerol, dihydroxyacetone, and glyceraldehyde. Arch Biochem Biophys. 1967 Aug;121(2):404–414. doi: 10.1016/0003-9861(67)90094-x. [DOI] [PubMed] [Google Scholar]
  41. ROSENTHAL H. L., PFLUKE M. L., BUSCAGLIA S. A stable iron reagent for determination of cholesterol. J Lab Clin Med. 1957 Aug;50(2):318–322. [PubMed] [Google Scholar]
  42. Randle P. J., Garland P. B., Hales C. N., Newsholme E. A., Denton R. M., Pogson C. I. Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res. 1966;22:1–48. doi: 10.1016/b978-1-4831-9825-5.50004-x. [DOI] [PubMed] [Google Scholar]
  43. Renold A. E. Spontaneous diabetes and--or obesity in laboratory rodents. Adv Metab Disord. 1968;3:49–84. [PubMed] [Google Scholar]
  44. Ruderman N. B., Toews C. J., Shafrir E. Role of free fatty acids in glucose homeostasis. Arch Intern Med. 1969 Mar;123(3):299–313. [PubMed] [Google Scholar]
  45. SHIGETA Y., SHREEVE W. W. FATTY ACID SYNTHESIS FROM GLUCOSE-I-H3 AND GLUCOSE-I-C14 IN OBESE-HYPERGLYCEMIC MICE. Am J Physiol. 1964 May;206:1085–1090. doi: 10.1152/ajplegacy.1964.206.5.1085. [DOI] [PubMed] [Google Scholar]
  46. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  47. Sata T., Estrich D. L., Wood P. D., Kinsell L. W. Evaluation of gel chromatography for plasma lipoprotein fractionation. J Lipid Res. 1970 Jul;11(4):331–340. [PubMed] [Google Scholar]
  48. Schonfeld G., Pfleger B. Overproduction of very low-density lipoproteins by livers of genetically obese rats. Am J Physiol. 1971 May;220(5):1178–1181. doi: 10.1152/ajplegacy.1971.220.5.1178. [DOI] [PubMed] [Google Scholar]
  49. Shreeve W. W., Lamdin E., Oji N., Slavinski R. Biosynthesis of fatty acids in obese mice in vivo. I. Studies with glucose-1-3-H(1-14-C), glucose-6-3-H(6-14-C), DL-lactate-2-3-H(2-14-C), and glycerol-2-3-H(1,3-14-C). Biochemistry. 1967 Apr;6(4):1160–1167. doi: 10.1021/bi00856a028. [DOI] [PubMed] [Google Scholar]
  50. Spencer A. F., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. Citrate cleavage in obesity and lactation. Biochem J. 1966 Jun;99(3):760–765. doi: 10.1042/bj0990760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stauffacher W., Orci L., Cameron D. P., Burr I. M., Renold A. E. Spontaneous hyperglycemia and-or obesity in laboratory rodents: an example of the possible usefulness of animal disease models with both genetic and environmental components. Recent Prog Horm Res. 1971;27:41–95. doi: 10.1016/b978-0-12-571127-2.50026-2. [DOI] [PubMed] [Google Scholar]
  52. Stauffacher W., Renold A. E. Effect of insulin in vivo on diaphragm and adipose tissue of obese mice. Am J Physiol. 1969 Jan;216(1):98–105. doi: 10.1152/ajplegacy.1969.216.1.98. [DOI] [PubMed] [Google Scholar]
  53. Stein J. M., Bewsher P. D., Stowers J. M. The metabolism of ketones, triglyceride and monoglyceride in livers of obese hyperglycaemic mice. Diabetologia. 1970 Dec;6(6):570–574. doi: 10.1007/BF00418223. [DOI] [PubMed] [Google Scholar]
  54. TULLER E. F., MAYER J. Serum proteins and their conjugates in mice. Experientia. 1959 Jan 15;15(1):15–16. doi: 10.1007/BF02157073. [DOI] [PubMed] [Google Scholar]
  55. Winand J., Furnelle J., Christophe J. Le métabolisme lipidique du foie chez la souris normale et la souris obèse-hyperglycémique. Biochim Biophys Acta. 1968 Mar 4;152(2):280–292. [PubMed] [Google Scholar]
  56. ZOMZELY C., MAYER J. Endogenous dilution of administered labeled acetate during lipogenesis and cholesterogenesis in two types of obese mice. Am J Physiol. 1959 May;196(5):956–960. doi: 10.1152/ajplegacy.1959.196.5.956. [DOI] [PubMed] [Google Scholar]
  57. Zucker L. M. Hereditary obesity in the rat associated with hyperlipemia. Ann N Y Acad Sci. 1965 Oct 8;131(1):447–458. doi: 10.1111/j.1749-6632.1965.tb34810.x. [DOI] [PubMed] [Google Scholar]
  58. de Gasquet P., Péquignot E. Lipoprotein lipase activities in adipose tissues, heart and diaphragm of the genetically obese mouse(ob-ob). Biochem J. 1972 Apr;127(2):445–447. doi: 10.1042/bj1270445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES