Skip to main content
IUCrData logoLink to IUCrData
. 2024 Oct 24;9(Pt 10):x241015. doi: 10.1107/S2414314624010150

2-Chloro-N-(4-hy­droxy­phen­yl)acetamide

Abderrazzak El Moutaouakil Ala Allah a, Benson M Kariuki b, Issam Ameziane El Hassani a, Abdulsalam Alsubari c,*, Walid Guerrab a, Musa A Said d, Youssef Ramli a,*
PMCID: PMC11660168  PMID: 39712662

The title compound is significantly distorted from planarity, with a twist angle between the planes through the hy­droxy­benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra­molecular C—H⋯O and N—H⋯Cl contacts. In the crystal, N—H⋯O hydrogen-bonding contacts between acetamide groups and O—H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].

Keywords: crystal structure, acetamide, hydrogen-bonding

Abstract

The title compound, C8H8ClNO2, is significantly distorted from planarity, with a twist angle between the planes through the hy­droxy­benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra­molecular C—H⋯O and N—H⋯Cl contacts. In the crystal, N—H⋯O hydrogen-bonding contacts between acetamide groups and O—H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].graphic file with name x-09-x241015-scheme1-3D1.jpg

Structure description

N-aryl­acetamides are inter­mediates for the synthesis of medicinal, agrochemical and pharmaceutical compounds (Missioui et al., 2021). As part of our ongoing studies of these systems (Missioui et al., 2022), we now describe the synthesis and structure of the title compound, C8H8ClNO2.

The mol­ecule, Fig. 1, is almost planar as indicated by a twist angle between the planes through the hy­droxy­benzene (C1–C6, O1) and acetamide (C7, C8, N1, O2) groups being 23.5 (2)°; the acetamide group has an anti conformation. The chloro substituent deviates only slightly from the plane of the acetamide group as indicated by the N1—C7—C8—Cl1 torsion angle of 15.4 (4)°.

Figure 1.

Figure 1

The mol­ecule of 2-chloro-N-(4-hy­droxy­phen­yl)acetamide showing the atom-numbering scheme and displacement parameters at the 50% probability level. The intra­molecular C—H⋯O and N—H⋯Cl contacts are shown as green dotted lines.

Two types of close intra­molecular contacts occur within the mol­ecule. The first contact is of the type C—H⋯O with a C3—H3⋯O2 angle of 116° and a C3⋯O2 distance of 2.873 (4) Å, Table 1. Similar contacts are observed in related structures including 2-chloro-N-(4-fluoro­phen­yl)acetamide (Kang et al., 2008), 2-chloro-N-phenyl­acetamide (Gowda et al., 2008) and 2-chloro-N-(4-chloro­phen­yl)acetamide (Gowda et al., 2007). The second contact is of the type N—H⋯Cl and has a N1—H1⋯Cl1 angle of 115° and a N1⋯Cl1 distance of 2.999 (2) Å.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2 0.93 2.34 2.873 (4) 116
N1—H1⋯Cl1 0.86 2.53 2.999 (2) 115
N1—H1⋯O2i 0.86 2.28 3.025 (3) 145
O1—H1A⋯O1ii 0.82 2.06 2.8585 (17) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the crystal, neighbouring mol­ecules are linked by N—H⋯O hydrogen-bonding between translationally related acetamide groups with a N1—H1⋯O2i [symmetry code: (i) x, y − 1, z] angle of 145° and a N1⋯O2i distance of 3.025 (3) Å, Table 1, to form linear chains parallel to the b axis (Fig. 2). The mol­ecules are also bridged by O—H⋯O contacts with a O1—H1A⋯O1ii [symmetry code: (ii) −x + 2, y + Inline graphic, −z + 2] angle of 166° and an O1⋯O1ii distance of 2.8585 (17) Å which, by themselves assemble mol­ecules along the 21 screw axis in the b-axis direction. The combined hydrogen-bonding inter­actions result in almost flat tapes of mol­ecules parallel to [Inline graphic03].

Figure 2.

Figure 2

A segment of the packing in the crystal of 2-chloro-N-(4-hy­droxy­phen­yl)acetamide showing the inter­molecular N—H⋯O and O—H⋯O hydrogen bonds as green dotted lines.

Synthesis and crystallization

4-Amino­phenol (1 mmol) was dissolved in pure acetic acid (30 ml) and placed in an ice-bath. Subsequently, chloro­acetyl chloride (1.2 mmol) was added portion-wise under stirring. At the end of the reaction, a solution of sodium acetate (25 ml) was added, and a solid precipitate formed after 30 min of stirring at room temperature. The resulting solid was filtered, washed with cold water, dried and recrystallized from its ethanol solution to yield the title compound as colourless crystals.

Yield = 89%, colour:colourless, m.p. = 413–415 K. FT–IR (ATR, ν, cm−1): 3385 (OH), 3200 (NH), 1640 (C=O). 1H NMR (500 MHz, DMSO-d6): δ p.p.m. 4.21 (s, 2H, CH2), 6.76–7.34 (m, 4H, Ar—H), 9.20 (s, 1H, OH), 10.23 (s, 1H, NH). 13C NMR (500 MHz, DMSO-d6): 43.42 (CH2); 117.68, 122.20, 131.50, 132.63, 153.68 (C—Ar); 164.76 (C=O). HRMS (ESI): calculated for C8H8ClNO2 [M - H]+ 186.0224, found 186.0328.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C8H8ClNO2
M r 185.60
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 6.5088 (6), 5.1758 (5), 12.2175 (14)
β (°) 101.649 (10)
V3) 403.11 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.45 × 0.20 × 0.07
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.642, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3642, 1902, 1487
R int 0.028
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.081, 1.06
No. of reflections 1902
No. of parameters 110
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.19
Absolute structure Flack x determined using 510 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.11 (5)

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624010150/tk4111sup1.cif

x-09-x241015-sup1.cif (136.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624010150/tk4111Isup2.hkl

x-09-x241015-Isup2.hkl (152.8KB, hkl)
x-09-x241015-Isup3.cml (3.2KB, cml)

Supporting information file. DOI: 10.1107/S2414314624010150/tk4111Isup3.cml

CCDC reference: 2392239

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA and IAEH; writing (original draft), AEMAA; writing (review and editing of the manuscript), YR; formal analysis, YR and BMK; supervision, YR; crystal structure determination, BMK.

full crystallographic data

2-Chloro-N-(4-hydroxyphenyl)acetamide . Crystal data

C8H8ClNO2 F(000) = 192
Mr = 185.60 Dx = 1.529 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.5088 (6) Å Cell parameters from 1576 reflections
b = 5.1758 (5) Å θ = 3.9–28.2°
c = 12.2175 (14) Å µ = 0.43 mm1
β = 101.649 (10)° T = 296 K
V = 403.11 (7) Å3 Plate, colourless
Z = 2 0.45 × 0.20 × 0.07 mm

2-Chloro-N-(4-hydroxyphenyl)acetamide . Data collection

SuperNova, Dual, Cu at home/near, Atlas diffractometer 1487 reflections with I > 2σ(I)
ω scans Rint = 0.028
Absorption correction: gaussian (CrysAlis Pro; Rigaku OD, 2023) θmax = 29.7°, θmin = 3.3°
Tmin = 0.642, Tmax = 1.000 h = −8→8
3642 measured reflections k = −7→7
1902 independent reflections l = −16→13

2-Chloro-N-(4-hydroxyphenyl)acetamide . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.0021P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.16 e Å3
1902 reflections Δρmin = −0.18 e Å3
110 parameters Absolute structure: Flack x determined using 510 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.11 (5)

2-Chloro-N-(4-hydroxyphenyl)acetamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Chloro-N-(4-hydroxyphenyl)acetamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7301 (4) 0.3699 (6) 0.8980 (2) 0.0311 (7)
C2 0.5982 (4) 0.5654 (6) 0.9179 (3) 0.0334 (7)
H2 0.645995 0.688449 0.972562 0.040*
C3 0.3940 (5) 0.5786 (6) 0.8563 (3) 0.0337 (7)
H3 0.305127 0.710757 0.869335 0.040*
C4 0.3236 (4) 0.3932 (6) 0.7754 (2) 0.0290 (7)
C5 0.4562 (5) 0.1964 (6) 0.7575 (3) 0.0335 (8)
H5 0.408280 0.070786 0.703994 0.040*
C6 0.6593 (5) 0.1844 (6) 0.8184 (3) 0.0348 (8)
H6 0.747984 0.051642 0.805778 0.042*
C7 −0.0065 (5) 0.6041 (7) 0.6835 (3) 0.0349 (7)
C8 −0.2181 (5) 0.5695 (7) 0.6051 (3) 0.0442 (9)
H8A −0.238963 0.713348 0.553173 0.053*
H8B −0.326264 0.580067 0.649112 0.053*
N1 0.1164 (3) 0.3959 (5) 0.7083 (2) 0.0331 (6)
H1 0.065971 0.250333 0.681401 0.040*
O1 0.9342 (3) 0.3507 (4) 0.9570 (2) 0.0433 (6)
H1A 0.967245 0.484830 0.991810 0.065*
O2 0.0363 (3) 0.8215 (4) 0.7186 (2) 0.0500 (6)
Cl1 −0.25580 (12) 0.27889 (19) 0.52655 (7) 0.0555 (3)

2-Chloro-N-(4-hydroxyphenyl)acetamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0250 (14) 0.0296 (17) 0.0360 (17) −0.0017 (13) −0.0002 (12) 0.0054 (14)
C2 0.0334 (17) 0.0289 (17) 0.0344 (17) −0.0011 (14) −0.0014 (13) −0.0042 (14)
C3 0.0304 (16) 0.0303 (17) 0.0383 (18) 0.0034 (14) 0.0022 (13) −0.0025 (14)
C4 0.0251 (15) 0.0268 (15) 0.0329 (16) −0.0010 (13) 0.0006 (12) 0.0036 (13)
C5 0.0326 (16) 0.0266 (17) 0.0386 (18) −0.0022 (13) 0.0007 (13) −0.0037 (13)
C6 0.0293 (15) 0.0254 (16) 0.050 (2) 0.0063 (12) 0.0079 (14) −0.0008 (14)
C7 0.0279 (16) 0.0337 (18) 0.0412 (18) 0.0000 (14) 0.0022 (13) 0.0041 (15)
C8 0.0340 (17) 0.0336 (19) 0.058 (2) 0.0014 (15) −0.0066 (15) 0.0046 (17)
N1 0.0279 (13) 0.0259 (13) 0.0407 (15) −0.0005 (11) −0.0047 (11) −0.0030 (12)
O1 0.0293 (10) 0.0387 (15) 0.0545 (14) 0.0005 (10) −0.0093 (9) −0.0015 (12)
O2 0.0407 (12) 0.0297 (14) 0.0705 (16) 0.0019 (11) −0.0105 (11) −0.0033 (12)
Cl1 0.0505 (5) 0.0519 (5) 0.0530 (5) −0.0009 (5) −0.0155 (4) −0.0056 (5)

2-Chloro-N-(4-hydroxyphenyl)acetamide . Geometric parameters (Å, º)

C1—C6 1.378 (4) C5—H5 0.9300
C1—C2 1.379 (4) C6—H6 0.9300
C1—O1 1.381 (3) C7—O2 1.216 (4)
C2—C3 1.391 (4) C7—N1 1.340 (4)
C2—H2 0.9300 C7—C8 1.520 (4)
C3—C4 1.387 (4) C8—Cl1 1.774 (4)
C3—H3 0.9300 C8—H8A 0.9700
C4—C5 1.381 (4) C8—H8B 0.9700
C4—N1 1.430 (3) N1—H1 0.8600
C5—C6 1.382 (4) O1—H1A 0.8200
C6—C1—C2 120.3 (3) C1—C6—H6 120.1
C6—C1—O1 117.8 (3) C5—C6—H6 120.1
C2—C1—O1 121.9 (3) O2—C7—N1 125.5 (3)
C1—C2—C3 120.1 (3) O2—C7—C8 116.4 (3)
C1—C2—H2 119.9 N1—C7—C8 118.1 (3)
C3—C2—H2 119.9 C7—C8—Cl1 116.7 (2)
C4—C3—C2 119.6 (3) C7—C8—H8A 108.1
C4—C3—H3 120.2 Cl1—C8—H8A 108.1
C2—C3—H3 120.2 C7—C8—H8B 108.1
C5—C4—C3 119.8 (3) Cl1—C8—H8B 108.1
C5—C4—N1 117.6 (3) H8A—C8—H8B 107.3
C3—C4—N1 122.6 (3) C7—N1—C4 126.0 (3)
C4—C5—C6 120.6 (3) C7—N1—H1 117.0
C4—C5—H5 119.7 C4—N1—H1 117.0
C6—C5—H5 119.7 C1—O1—H1A 109.5
C1—C6—C5 119.7 (3)
N1—C7—C8—Cl1 −15.4 (4)

2-Chloro-N-(4-hydroxyphenyl)acetamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2 0.93 2.34 2.873 (4) 116
N1—H1···Cl1 0.86 2.53 2.999 (2) 115
N1—H1···O2i 0.86 2.28 3.025 (3) 145
O1—H1A···O1ii 0.82 2.06 2.8585 (17) 166

Symmetry codes: (i) x, y−1, z; (ii) −x+2, y+1/2, −z+2.

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  2. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4488.
  3. Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. [DOI] [PMC free article] [PubMed]
  4. Kang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  6. Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687–690. [DOI] [PMC free article] [PubMed]
  7. Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct.1239, 130484.
  8. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  9. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624010150/tk4111sup1.cif

x-09-x241015-sup1.cif (136.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624010150/tk4111Isup2.hkl

x-09-x241015-Isup2.hkl (152.8KB, hkl)
x-09-x241015-Isup3.cml (3.2KB, cml)

Supporting information file. DOI: 10.1107/S2414314624010150/tk4111Isup3.cml

CCDC reference: 2392239

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES