Skip to main content
IUCrData logoLink to IUCrData
. 2024 Oct 4;9(Pt 10):x240936. doi: 10.1107/S2414314624009362

1,4-Di­methyl­piperazine-2,3-dione

Themmila Khamrang a, C Ponraj b, Madhukar Hemamalini c, G Jerald Maria Antony b,*, Dhandayutham Saravanan b
Editor: W T A Harrisond
PMCID: PMC11660176  PMID: 39712659

In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets.

Keywords: crystal Structure, half chair, hydrogen bonding

Abstract

In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets.graphic file with name x-09-x240936-scheme1-3D1.jpg

Structure description

Piperazine and its derivatives are found within biologically active mol­ecules across a diverse range of therapeutic areas, including anti­fungal, anti­bacterial, anti­malarial, anti­psychotic, anti­depressant, and anti­tumor applications targeting colon, prostate, breast, lung, and leukemia cancers (Brockunier et al., 2004; Bogatcheva et al., 2005). As part of our studies in this area, we now describe the structure of the title compound, C6H10N2O2.

The asymmetric unit is shown in Fig. 1. The piperazine-2,3-dione ring adopts a half chair conformation, with C1 and C2 displaced from the other ring atoms by 0.279 (3) and −0.342 (3) Å, respectively. The mol­ecule possesses local C2 symmetry about an axis passing through the midpoints of the C1—C2 and C3—C4 bonds. In the crystal (Fig. 2), the mol­ecules are connected by weak C2—H2A⋯O1 and C5—H5C⋯O2 hydrogen bonds (Table 1) to generate (010) layers.

Figure 1.

Figure 1

The asymmetric unit with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The crystal packing of the title compound.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.97 2.49 3.419 (3) 161
C5—H5C⋯O2ii 0.96 2.54 3.481 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

A search of the Cambridge Structural Database (CSD; Version 5.43, update November 2022; Groom et al., 2016) revealed some similar structures to the title compound, including 3,6-di­benzyl­idene-1,4-di­methyl­piperazine-2,5-dione (CSD refcode IQOCEZ; Ge et al., 2019), 2,5-bis­(1-methyl-2-oxoindol-3-yl­idene)-1,4-di­methyl­piperazine-3,6-dione acetone solvate (PALVUT; Gompper et al., 1992) and 6-(bromo­benz­yl)-3-benzyl­idene-6-erythro-hy­droxy-1,4-di­methyl­piperazine-2,5-dione (SAWSEO; Sterns et al., 1989).

Synthesis and crystallization

The title compound was prepared according to the literature method (Haraguchi et al., 2015). Recrystallization of the solid from di­chloro­methane solution gave colorless plates, which were suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C6H10N2O2
M r 142.16
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.3781 (6), 8.0050 (6), 12.1306 (8)
β (°) 99.767 (7)
V3) 706.07 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.37 × 0.32 × 0.29
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Analytical (SADABS; Krause et al., 2015)
Tmin, Tmax 0.507, 0.578
No. of measured, independent and observed [I > 2σ(I)] reflections 2746, 1624, 1194
R int 0.016
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.181, 1.07
No. of reflections 1624
No. of parameters 93
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.21

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314624009362/hb4484sup1.cif

x-09-x240936-sup1.cif (110.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624009362/hb4484Isup2.hkl

x-09-x240936-Isup2.hkl (131KB, hkl)
x-09-x240936-Isup3.cml (3.2KB, cml)

Supporting information file. DOI: 10.1107/S2414314624009362/hb4484Isup3.cml

CCDC reference: 2386002

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

1,4-Dimethylpiperazine-2,3-dione. Crystal data

C6H10N2O2 F(000) = 304
Mr = 142.16 Dx = 1.337 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.3781 (6) Å Cell parameters from 9307 reflections
b = 8.0050 (6) Å θ = 3.5–26.4°
c = 12.1306 (8) Å µ = 0.10 mm1
β = 99.767 (7)° T = 293 K
V = 706.07 (9) Å3 Plate, colourless
Z = 4 0.37 × 0.32 × 0.29 mm

1,4-Dimethylpiperazine-2,3-dione. Data collection

Agilent Xcalibur, Atlas, Gemini diffractometer 1194 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
ω scans θmax = 29.0°, θmin = 3.1°
Absorption correction: analytical (SADABS; Krause et al., 2015) h = −10→8
Tmin = 0.507, Tmax = 0.578 k = −10→5
2746 measured reflections l = −6→16
1624 independent reflections

1,4-Dimethylpiperazine-2,3-dione. Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.2479P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1624 reflections Δρmax = 0.45 e Å3
93 parameters Δρmin = −0.21 e Å3
0 restraints

1,4-Dimethylpiperazine-2,3-dione. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All the H atoms were positioned geometrically (C—H = 0.96–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

1,4-Dimethylpiperazine-2,3-dione. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.4932 (2) 0.2262 (2) 0.62587 (12) 0.0591 (5)
O1 0.8009 (2) 0.3382 (3) 0.55770 (14) 0.0642 (6)
N1 0.6498 (2) 0.3592 (2) 0.38031 (14) 0.0427 (5)
N2 0.3516 (2) 0.1982 (2) 0.44717 (14) 0.0421 (5)
C4 0.6624 (3) 0.3190 (3) 0.48783 (16) 0.0380 (5)
C3 0.4923 (3) 0.2422 (2) 0.52590 (15) 0.0364 (5)
C5 0.7995 (4) 0.4489 (4) 0.3415 (2) 0.0616 (7)
H5A 0.899882 0.462273 0.402473 0.092*
H5B 0.756751 0.556833 0.313902 0.092*
H5C 0.840112 0.386644 0.282610 0.092*
C1 0.4771 (4) 0.3452 (3) 0.30300 (18) 0.0547 (7)
H1A 0.502520 0.333921 0.227477 0.066*
H1B 0.406408 0.446718 0.306177 0.066*
C2 0.3670 (4) 0.2011 (3) 0.32859 (19) 0.0555 (6)
H2A 0.245130 0.207406 0.283752 0.067*
H2B 0.424361 0.098582 0.309359 0.067*
C6 0.1915 (3) 0.1170 (4) 0.4791 (3) 0.0649 (8)
H6A 0.223240 0.073267 0.553547 0.097*
H6B 0.151882 0.027484 0.428037 0.097*
H6C 0.093814 0.196898 0.476737 0.097*

1,4-Dimethylpiperazine-2,3-dione. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0637 (11) 0.0816 (12) 0.0319 (8) −0.0121 (9) 0.0082 (7) 0.0062 (8)
O1 0.0445 (9) 0.0987 (14) 0.0438 (9) −0.0153 (9) −0.0083 (7) 0.0067 (9)
N1 0.0455 (10) 0.0500 (10) 0.0318 (9) −0.0055 (8) 0.0045 (7) 0.0017 (7)
N2 0.0376 (9) 0.0480 (10) 0.0393 (10) −0.0067 (8) 0.0023 (7) −0.0029 (8)
C4 0.0358 (10) 0.0455 (11) 0.0307 (10) 0.0003 (9) −0.0004 (8) −0.0013 (8)
C3 0.0388 (10) 0.0384 (10) 0.0308 (10) 0.0031 (8) 0.0023 (8) 0.0000 (8)
C5 0.0650 (15) 0.0706 (17) 0.0544 (15) −0.0116 (13) 0.0250 (12) 0.0023 (12)
C1 0.0653 (15) 0.0642 (15) 0.0299 (10) −0.0058 (12) −0.0055 (10) 0.0061 (10)
C2 0.0572 (14) 0.0649 (15) 0.0377 (12) −0.0054 (12) −0.0113 (10) −0.0033 (10)
C6 0.0440 (13) 0.0738 (17) 0.0774 (19) −0.0156 (12) 0.0118 (12) −0.0092 (14)

1,4-Dimethylpiperazine-2,3-dione. Geometric parameters (Å, º)

O2—C3 1.218 (2) C5—H5B 0.9600
O1—C4 1.222 (2) C5—H5C 0.9600
N1—C4 1.331 (3) C1—C2 1.474 (3)
N1—C1 1.452 (3) C1—H1A 0.9700
N1—C5 1.461 (3) C1—H1B 0.9700
N2—C3 1.333 (3) C2—H2A 0.9700
N2—C6 1.457 (3) C2—H2B 0.9700
N2—C2 1.462 (3) C6—H6A 0.9600
C4—C3 1.537 (3) C6—H6B 0.9600
C5—H5A 0.9600 C6—H6C 0.9600
C4—N1—C1 121.47 (18) N1—C1—C2 112.27 (18)
C4—N1—C5 120.23 (19) N1—C1—H1A 109.2
C1—N1—C5 117.27 (18) C2—C1—H1A 109.2
C3—N2—C6 119.7 (2) N1—C1—H1B 109.2
C3—N2—C2 121.30 (18) C2—C1—H1B 109.2
C6—N2—C2 118.05 (19) H1A—C1—H1B 107.9
O1—C4—N1 124.1 (2) N2—C2—C1 110.93 (19)
O1—C4—C3 118.12 (18) N2—C2—H2A 109.5
N1—C4—C3 117.77 (17) C1—C2—H2A 109.5
O2—C3—N2 123.9 (2) N2—C2—H2B 109.5
O2—C3—C4 118.32 (18) C1—C2—H2B 109.5
N2—C3—C4 117.82 (17) H2A—C2—H2B 108.0
N1—C5—H5A 109.5 N2—C6—H6A 109.5
N1—C5—H5B 109.5 N2—C6—H6B 109.5
H5A—C5—H5B 109.5 H6A—C6—H6B 109.5
N1—C5—H5C 109.5 N2—C6—H6C 109.5
H5A—C5—H5C 109.5 H6A—C6—H6C 109.5
H5B—C5—H5C 109.5 H6B—C6—H6C 109.5
C1—N1—C4—O1 −175.3 (2) N1—C4—C3—O2 −170.0 (2)
C5—N1—C4—O1 −7.2 (3) O1—C4—C3—N2 −170.1 (2)
C1—N1—C4—C3 5.3 (3) N1—C4—C3—N2 9.4 (3)
C5—N1—C4—C3 173.39 (19) C4—N1—C1—C2 −35.3 (3)
C6—N2—C3—O2 −3.8 (3) C5—N1—C1—C2 156.3 (2)
C2—N2—C3—O2 −172.4 (2) C3—N2—C2—C1 −37.7 (3)
C6—N2—C3—C4 176.84 (19) C6—N2—C2—C1 153.5 (2)
C2—N2—C3—C4 8.3 (3) N1—C1—C2—N2 49.3 (3)
O1—C4—C3—O2 10.5 (3)

1,4-Dimethylpiperazine-2,3-dione. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O2i 0.97 2.49 3.419 (3) 161
C5—H5C···O2ii 0.96 2.54 3.481 (3) 168

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z−1/2.

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
  2. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2005). J. Med. Chem.49, 3045–3048. [DOI] [PMC free article] [PubMed]
  3. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett.14, 4763–4766. [DOI] [PubMed]
  4. Ge, Y., Han, Z., Wang, Z. & Ding, K. (2019). J. Am. Chem. Soc.141, 8981–8988. [DOI] [PubMed]
  5. Gompper, R., Kellner, R. & Polborn, K. (1992). Angew. Chem. Int. Ed. Engl.31, 1202–1205.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Haraguchi, R., Takada, Y. & Matsubara, S. (2015). Org. Biomol. Chem.13, 241–247. [DOI] [PubMed]
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  12. Sterns, M., Patrick, J. M., Patrick, V. A. & White, A. H. (1989). Aust. J. Chem.42, 349.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314624009362/hb4484sup1.cif

x-09-x240936-sup1.cif (110.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624009362/hb4484Isup2.hkl

x-09-x240936-Isup2.hkl (131KB, hkl)
x-09-x240936-Isup3.cml (3.2KB, cml)

Supporting information file. DOI: 10.1107/S2414314624009362/hb4484Isup3.cml

CCDC reference: 2386002

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES