Abstract
In rat liver mitochondria suspended in KCl medium and containing a low concentration of a K+-specific cationophore (valinomycin or Triton X-100), oligomycin was shown to induce uncoupling of oxidative phosphorylation, stimulation of adenosine triphosphatase activity, release of the respiratory control, decrease of energy-dependent changes in the fluorescence of the dye 8-anilino-1-naphthalenesulphonic acid and rapid swelling of mitochondria. Oligomycin caused none of the above effects when Br− or NO3− was substituted for Cl− as the major anionic species or when Na+ replaced the K+. The same concentration of oligomycin that caused uncoupling and swelling slightly improved energy-conserving reactions when the cationophores were omitted. In the presence of KSCN, valinomycin or Triton X-100 by itself caused uncoupling and swelling which was not further enhanced by oligomycin. On the basis of the above results it is suggested that the energy dissipation resulting from the concerted action of the cationophores and oligomycin is connected with the simultaneous transport of K+ and its counter ion and that oligomycin plays its role in the uncoupling by facilitating the permeation of Cl− through the cristae membrane of the mitochondria.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDRIDGE W. N. The biochemistry of organotin compounds: trialkyltins and oxidative phosphorylation. Biochem J. 1958 Jul;69(3):367–376. doi: 10.1042/bj0690367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
- Aldridge W. N., Street B. W. Oxidative phosphorylation. The relation between the specific binding of trimethylytin and triethyltin to mitochondria and their effects on various mitochondrial functions. Biochem J. 1971 Aug;124(1):221–234. doi: 10.1042/bj1240221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley G. P., Jurkowitz M., Merola A. J., Scott K. M. Ion transport by heart mitochondria. XXV. Activation of energy-linked K + uptake by non-ionic detergents. Arch Biochem Biophys. 1972 Oct;152(2):744–754. doi: 10.1016/0003-9861(72)90270-6. [DOI] [PubMed] [Google Scholar]
- Chappell J. B., Robinson B. H. Penetration of the mitochondrial membrane by tricarboxylic acid anions. Biochem Soc Symp. 1968;27:123–133. [PubMed] [Google Scholar]
- Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
- ERNSTER L., LOW H. Reconstruction of oxidative phosphorylation in aged mitochondrial systems. Exp Cell Res. 1955;(Suppl 3):133–153. [PubMed] [Google Scholar]
- Fessenden J. M., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XI. Stimulation of oxidative phosphorylation by coupling factors and oligomycin; inhibition by an antibody against coupling factor 1. J Biol Chem. 1966 May 25;241(10):2483–2489. [PubMed] [Google Scholar]
- Hatefi Y., Hanstein W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1129–1136. doi: 10.1073/pnas.62.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izzard S., Tedeschi H. Characterization of orthophosphate-induced active cation transport in isolated liver mitochondria. Arch Biochem Biophys. 1973 Feb;154(2):527–539. doi: 10.1016/0003-9861(73)90005-2. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
- LEE C. P., ERNSTER L. RESTORATION OF OXIDATIVE PHOSPHORYLATION IN NON-PHOSPHORYLATING SUBMITOCHONDRIAL PARTICLES BY OLIGOMYCIN. Biochem Biophys Res Commun. 1965 Feb 17;18:523–529. doi: 10.1016/0006-291x(65)90785-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee C., Ernster L. Studies of the energy-transfer system of submitochondrial particles. 2. Effects of oligomycin and aurovertin. Eur J Biochem. 1968 Feb;3(4):391–400. doi: 10.1111/j.1432-1033.1967.tb19542.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells. Fed Proc. 1967 Sep;26(5):1370–1379. [PubMed] [Google Scholar]
- Nordenbrand K., Ernster L. Studies of the energy-transfer system of submitochondrial particles. Fluorochrome response as a measure of the energized state. Eur J Biochem. 1971 Jan;18(2):258–273. doi: 10.1111/j.1432-1033.1971.tb01239.x. [DOI] [PubMed] [Google Scholar]
- Papa S., Guerrieri F., Simone S., Lorusso M., Larosa D. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Biochim Biophys Acta. 1973 Jan 18;292(1):20–38. doi: 10.1016/0005-2728(73)90247-8. [DOI] [PubMed] [Google Scholar]
- Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1949–1956. doi: 10.1073/pnas.58.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racker E. Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors. J Membr Biol. 1972 Dec 29;10(3):221–235. doi: 10.1007/BF01867856. [DOI] [PubMed] [Google Scholar]
- Selwyn M. J., Dawson A. P., Stockdale M., Gains N. Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem. 1970 May 1;14(1):120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x. [DOI] [PubMed] [Google Scholar]
- Stockdale M., Dawson A. P., Selwyn M. J. Effects of trialkyltin and triphenyltin compounds on mitochondrial respiration. Eur J Biochem. 1970 Aug;15(2):342–351. doi: 10.1111/j.1432-1033.1970.tb01013.x. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Byington K. H., MacLennan D. H. Studies on the mitochondrial adenosine triphosphatase system. II. The isolation and characterization of an oligomycin-sensitive adenosine triphosphatase from bovine heart mitochondria. J Biol Chem. 1968 May 10;243(9):2405–2412. [PubMed] [Google Scholar]
- von Glehn M., Norrestam R., Kierkegaard P., Maron L., Ernster L. Three-dimensional structure of oligomycin B. FEBS Lett. 1972 Feb 15;20(3):267–269. doi: 10.1016/0014-5793(72)80083-8. [DOI] [PubMed] [Google Scholar]
