Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Oct 11;80(Pt 11):1146–1150. doi: 10.1107/S2056989024009794

Crystal structures of two different multi-component crystals consisting of 1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline and fumaric acid

Hiroki Shibata a,b,*, Aya Sakon c, Noriyuki Takata d, Hiroshi Takiyama b
Editor: Y Ozawae
PMCID: PMC11660478  PMID: 39712158

Two different multi-component crystals consisting of papaverine [1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline, C20H21NO4] and fumaric acid [C4H4O4] were obtained.

Keywords: crystal structure, fumaric acid, papaverine, multi-component crystal

Abstract

Two different multi-component crystals consisting of papaverine [1-(3,4-di­meth­oxy­benz­yl)-6,7-di­meth­oxy­iso­quinoline, C20H21NO4] and fumaric acid [C4H4O4] were obtained. Single-crystal X-ray structure analysis revealed that one, C20H21NO4·1.5C4H4O4 (I), is a salt co-crystal composed of salt-forming and non-salt-forming mol­ecules, and the other, C20H21NO4·0.5C4H4O4 (II), is a salt–co-crystal inter­mediate (i.e., in an inter­mediate state between a salt and a co-crystal). In this study, one state (crystal structure at 100 K) within the salt–co-crystal continuum is defined as the ‘inter­mediate’.

1. Chemical context

Papaverine (1-[3,4-di­meth­oxy­benz­yl]-6,7-di­meth­oxy­iso­quino­line) is an iso­quinoline alkaloid compound extracted from the mature seed capsules of poppies (Kang et al., 2018). It is an anti­spasmodic and vasodilator, used primarily in the treatment of smooth muscle spasms and for vasodilation and improvement of symptoms in acute arterial embolism, acute pulmonary embolism, peripheral circulatory disturbance, and coronary circulatory disturbance. The active pharmaceutical ingredient papaverine has been developed as a hydro­chloride salt whose crystal structure has been determined (Reynolds et al., 1974). In the pharmaceutical industry, studies on salt crystallization and co-crystallization are conducted for purposes such as improving the solid-state stability of the active pharmaceutical ingredient or improvement of its dissolution properties. Fumaric acid is a di­carb­oxy­lic acid and a cistrans isomer of maleic acid and is used in the pharmaceutical industry as a counter-ion in salts and as a conformer of co-crystals. For example, among 1372 new drugs approved by the US Food and Drug Administration between 1939 and 2020, fumaric acid was used as a counter-ion in the salts of ten drugs (Bharate et al., 2021). The recently developed COVID-19 anti­viral drug substance Ensitrelvir is crystallized as a co-crystal with fumaric acid (Kawajiri et al., 2023).

In this work, we synthesized two multicomponent crystals — a salt co-crystal (I) and a salt–co-crystal inter­mediate (II) — consisting of papaverine 1 and fumaric acid 2, and we determined their crystal structures. In this study, one state (crystal structure at 100 K) within the salt–co-crystal continuum is defined as the ‘inter­mediate’.1.

2. Structural commentary

The crystal structure of (I) is shown in Fig. 1. It crystallized with a 1:1.5 papaverine:fumaric acid stoichiometric ratio in the space group PInline graphic with Z = 2, with one full mol­ecule of papaverine and three half mol­ecules of fumaric acid (fumaric acids A, B, and C) in the asymmetric unit. The three fumaric acid mol­ecules were positioned on a center of symmetry, with mol­ecules A and C being disordered over two positions (O39/O40/C41 and C33).

Figure 1.

Figure 1

The mol­ecular structure of (I). Hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 2, −y + 2, −z + 1; (ii) −x + 1, −y + 2, −z; (iii) −x + 2, −y + 2, −z + 2.]

Since the C30—O31 and C30—O32 distances of fumaric acid mol­ecule A are 1.248 (2) Å and 1.246 (3) Å, respectively, the carb­oxy group of mol­ecule A is dissociated (Childs et al., 2007; Chen et al., 2012). In addition, N1 of the papaverine mol­ecule is protonated and is engaged in N—H⋯O hydrogen bonding (Table 1). Therefore, it was determined that fumaric acid mol­ecule A and the papaverine mol­ecule form a salt. The fumaric acid mol­ecules B and C are hydrogen-bonded to fumaric acid mol­ecule A. The C34—O35 and C34—O36 distances in fumaric acid mol­ecule B are 1.324 (3) Å and 1.211 (2) Å, respectively, thus the carb­oxy group of mol­ecule B is not dissociated. The C38—O39A and C38—O40A distances in fumaric acid mol­ecule C are 1.280 (5) Å and 1.231 (6) Å, respectively, thus the carb­oxy group of mol­ecule C is not dissociated (Childs et al., 2007; Chen et al., 2012). Therefore, this multicomponent crystal includes both salt-forming and non–salt-forming mol­ecules and was thus concluded to be a salt co-crystal, (I).

Table 1. Hydrogen-bond geometry (Å, °) for (I).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O31 0.88 2.20 3.034 (3) 159
N1—H1⋯O32 0.88 2.18 2.919 (2) 141
O35—H35⋯O31 0.84 1.83 2.617 (2) 156
O39A—H39A⋯O32 0.84 1.67 2.502 (4) 169

The crystal structure of (II) is given in Fig. 2. It crystallized with a 1:0.5 papaverine:fumaric acid stoichiometric ratio in space group P21/n with Z = 4, with one full mol­ecule of papaverine and half a mol­ecule of fumaric acid in the asymmetric unit. The fumaric acid mol­ecule is positioned on the center of symmetry. The C30–O31 and C30–O32 distances in the fumaric acid mol­ecule are 1.306 (1) and 1.223 (1) Å, respectively, indicating that the carb­oxy­lic acid of the fumaric acid mol­ecule is not dissociated (Childs et al., 2007; Chen et al., 2012). Therefore, the fumaric acid and papaverine mol­ecules were determined to form a co-crystal. However, the O—H⋯N hydrogen bond [DA = 2.5687 (12) Å, Table 2) is shorter than that in neutral or ionic synthons, which indicates an inter­mediate state between a salt and a co-crystal (Childs et al., 2007; Thipparaboina et al., 2015; Stevens et al., 2020; Tothadi et al., 2021; Kotte et al., 2023). It was thus concluded that this multicomponent crystal, (II), is a salt–co-crystal inter­mediate.

Figure 2.

Figure 2

The mol­ecular structure of (II). The hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x, −y + 1, −z + 1.]

Table 2. Hydrogen-bond geometry (Å, °) for (II).

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H31⋯N1 0.84 (1) 1.73 (1) 2.5687 (12) 175 (1)
C9—H9⋯O32i 0.95 (1) 2.27 (1) 3.2191 (14) 176 (1)

Symmetry code: (i) Inline graphic.

3. Supra­molecular features

The combination of the same two components – papaverine and fumaric acid – led to two different multicomponent crystals each with a different stoichiometric ratio and packing. The fumaric acid mol­ecules in (I) form a systematic two-dimensional sheet structure parallel to the ac plane with hydrogen bonds linking fumaric acid mol­ecules A, B, and C (Fig. 3). The space between the fumaric acid sheets is filled with a two-dimensional layer of papaverine mol­ecules hydrogen-bonded to fumaric acid mol­ecules A, resulting in (I) having a layered structure (Fig. 4).

Figure 3.

Figure 3

Systematic two-dimensional sheet structure of fumaric acid in (I) viewed along the ac plane. Inter­molecular O—H⋯O hydrogen bonds are shown as dashed lines. One of the two disorder components has been omitted for clarity.

Figure 4.

Figure 4

The layered structure of (I) viewed along the a axis. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines. All hydrogen atoms and one of the two disordered components of the fumaric acid mol­ecules have been omitted for clarity.

Compound (II) exhibits a three-mol­ecule unit structure with hydrogen bonds between two papaverine mol­ecules and one fumaric acid mol­ecule (Fig. 5). The H9⋯O32 and C9⋯O32 distances between two of these three-mol­ecule units are 2.2706 (14) and 3.2191 (14) Å, respectively, with a C9—H9⋯O32 angle of 176.13 (11)° (Fig. 6a, Table 2); thus, it was concluded that there is a C—H⋯O hydrogen bond (Steiner, 1997). A ring structure consisting of two O—H⋯N hydrogen bonds and two C—H⋯O hydrogen bonds between two papaverine mol­ecules and two fumaric acid mol­ecules is observed (Fig. 6a). As a result, a one-dimensional ribbon structure is formed by the combination of O—H⋯N and C—H⋯O hydrogen bonds (Fig. 6b). The final crystal structure is formed by the repeated overlapping of these ribbon structures (Fig. 7).

Figure 5.

Figure 5

Structural unit in the crystal of (II). Inter­molecular O—H⋯N hydrogen bonds are shown as dashed lines.

Figure 6.

Figure 6

One-dimensional ribbon structure of (II). Inter­molecular O—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines. (a) Enlarged view of hydrogen-bonded ring. (b) Overview of the one-dimensional ribbon structure.

Figure 7.

Figure 7

The packing of (II). Each blue and green line represents a one-dimensional ribbon structure. All hydrogen atoms have been removed for clarity.

4. Database survey

A survey of the Cambridge Structural Database (WebCSD, v5.44, April 2023; Groom et al., 2016) for structures with papaverine resulted in four hits. Two crystal structures were free-base, single-component crystals [refcodes MVERIQ (Baggio & Baggio, 1973) and MVERIQ01 (Marek et al., 1997)]. The other two crystals were salts: one was a hydro­chloride salt (refcode PAPAVC; Reynolds et al., 1974) and the other was a hydro­bromide salt (refcode ZZZGYK; Van Hulle et al., 1953). There were no reports of multi-component crystals of papaverine.

5. Synthesis and crystallization

Compound (I) was prepared as follows. About 3 mg (0.009 mmol) of papaverine and 2 mg (0.018 mmol) of fumaric acid were dissolved in 0.025 mL of ethanol. The prepared solution was shaken at room temperature at 100 r.p.m. overnight, and clear light colorless, block-shaped crystals were obtained. Compound (II) was prepared as follows. About 20 mg (0.06 mmol) of papaverine and 10 mg (0.09 mmol) of fumaric acid were dissolved in 0.28 mL of a mixture of acetone and water (6:1) with heating at 368K. The prepared solution was shaken at room temperature at 100 r.p.m. overnight, and clear, light, colorless, block-shaped crystals was obtained.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. The N-bound H atom in (I) was positioned geometrically and refined using a riding model with isotropic displacement parameter Uiso(H) = 1.2Ueq(N). The O-bound H atoms in (I) were located in difference-Fourier maps and refined with O—H = 0.84 Å and with isotropic displacement parameters Uiso(H) = 1.5Ueq(O). The C-bound H atoms in (I) were positioned geometrically (C—H = 0.95, 0.98, and 0.99 Å for sp2-hybridized, methyl, and methyl­ene hydrogen atoms, respectively) and refined using a riding model, with isotropic displacement parameters Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other H atoms. The fumaric acid was disordered over two positions (O39/O40/C41 and C33), for which occupancies were refined, converging to 0.598/0.402 and 0.742/0.258, respectively. Restraints by DFIX were applied for C38/O39/O40, O39/O40, O40/H40, O32/H40, and C38/H40. For compound (II), there were no N-bound H atoms or disorders, and the refinement conditions for O-bound H atoms and C-bound H atoms were the same as those for compound (I).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C20H22NO4·1.5C4H4O4 C20H21NO4·0.5C4H4O4
M r 513.48 397.43
Crystal system, space group Triclinic, PInline graphic Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 9.5290 (2), 10.5445 (3), 12.6509 (4) 9.05718 (12), 6.71363 (11), 32.8419 (4)
α, β, γ (°) 91.606 (2), 104.980 (2), 97.823 (2) 90, 95.9308 (12), 90
V3) 1213.87 (6) 1986.31 (5)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.92 0.80
Crystal size (mm) 0.17 × 0.08 × 0.03 0.22 × 0.11 × 0.11
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022) Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
Tmin, Tmax 0.862, 1.000 0.908, 1.000
No. of measured, independent and observed reflections 10089, 4366, 3457 [I > 2σ(I)] 8710, 3589, 3325 [I ≥ 2u(I)]
R int 0.026 0.018
(sin θ/λ)max−1) 0.601 0.601
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.06 0.033, 0.087, 1.04
No. of reflections 4366 3589
No. of parameters 382 268
No. of restraints 282 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.39 0.27, −0.21

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), OLEX2.refine (Bourhis et al., 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) II, I. DOI: 10.1107/S2056989024009794/ox2007sup1.cif

e-80-01146-sup1.cif (458.7KB, cif)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989024009794/ox2007IIsup3.hkl

e-80-01146-IIsup3.hkl (347.7KB, hkl)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024009794/ox2007Isup2.hkl

e-80-01146-Isup2.hkl (286.6KB, hkl)
e-80-01146-Isup4.mol (3.1KB, mol)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007Isup4.mol

e-80-01146-IIsup5.mol (3.1KB, mol)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007IIsup5.mol

e-80-01146-Isup6.cml (19.2KB, cml)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007Isup6.cml

e-80-01146-IIsup7.cml (15.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007IIsup7.cml

CCDC references: 2312143, 2312144

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Ayano Horikawa (Chugai Pharmaceutical Co., Ltd.) for helpful discussions of the single-crystal structure.

supplementary crystallographic information

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Crystal data

C20H21NO4·0.5C4H4O4 F(000) = 843.079
Mr = 397.43 Dx = 1.329 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 9.05718 (12) Å Cell parameters from 6957 reflections
b = 6.71363 (11) Å θ = 2.7–67.9°
c = 32.8419 (4) Å µ = 0.80 mm1
β = 95.9308 (12)° T = 100 K
V = 1986.31 (5) Å3 Block, clear light colourless
Z = 4 0.22 × 0.11 × 0.11 mm

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 3589 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 3325 reflections with I≥ 2u(I)
Mirror monochromator Rint = 0.018
Detector resolution: 10.0000 pixels mm-1 θmax = 68.0°, θmin = 2.7°
ω scans h = −10→5
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −8→8
Tmin = 0.908, Tmax = 1.000 l = −39→39
8710 measured reflections

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Refinement

Refinement on F2 37 constraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.6045P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087 (Δ/σ)max = −0.0003
S = 1.04 Δρmax = 0.27 e Å3
3589 reflections Δρmin = −0.21 e Å3
268 parameters Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0012 (2)

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.51693 (10) 0.60177 (14) 0.44622 (3) 0.0210 (2)
C2 0.60617 (12) 0.51334 (17) 0.42229 (3) 0.0187 (2)
C3 0.74048 (11) 0.60359 (17) 0.41307 (3) 0.0182 (2)
C4 0.83390 (12) 0.51426 (17) 0.38613 (3) 0.0197 (2)
H4 0.80587 (12) 0.39140 (17) 0.37322 (3) 0.0237 (3)*
C5 0.96396 (12) 0.60367 (18) 0.37863 (3) 0.0218 (2)
C6 1.00943 (13) 0.78635 (18) 0.39912 (3) 0.0238 (3)
C7 0.92008 (13) 0.87524 (17) 0.42489 (3) 0.0229 (3)
H7 0.94998 (13) 0.99708 (17) 0.43796 (3) 0.0274 (3)*
C8 0.78282 (12) 0.78679 (17) 0.43229 (3) 0.0200 (2)
C9 0.68699 (13) 0.87280 (17) 0.45879 (3) 0.0227 (2)
H9 0.71313 (13) 0.99387 (17) 0.47268 (3) 0.0272 (3)*
C10 0.55693 (13) 0.77991 (18) 0.46414 (3) 0.0233 (3)
H10 0.49118 (13) 0.84156 (18) 0.48104 (3) 0.0279 (3)*
C11 0.56339 (12) 0.30741 (17) 0.40725 (3) 0.0206 (2)
H11a 0.47821 (12) 0.26165 (17) 0.42142 (3) 0.0247 (3)*
H11b 0.64743 (12) 0.21623 (17) 0.41512 (3) 0.0247 (3)*
C12 0.52185 (11) 0.29044 (16) 0.36140 (3) 0.0192 (2)
C13 0.58166 (12) 0.13608 (17) 0.33954 (3) 0.0205 (2)
H13 0.64718 (12) 0.04275 (17) 0.35364 (3) 0.0246 (3)*
C14 0.54649 (12) 0.11766 (17) 0.29756 (3) 0.0208 (2)
C15 0.44833 (11) 0.25584 (17) 0.27672 (3) 0.0200 (2)
C16 0.38820 (12) 0.40628 (17) 0.29850 (4) 0.0223 (2)
H16 0.32136 (12) 0.49876 (17) 0.28463 (4) 0.0268 (3)*
C17 0.42478 (12) 0.42374 (17) 0.34077 (4) 0.0219 (2)
H17 0.38266 (12) 0.52785 (17) 0.35539 (4) 0.0262 (3)*
O18 0.60006 (10) −0.02676 (13) 0.27362 (3) 0.0286 (2)
C19 0.70127 (16) −0.1679 (2) 0.29353 (4) 0.0363 (3)
H19a 0.7335 (9) −0.2609 (10) 0.27322 (6) 0.0545 (5)*
H19b 0.7878 (6) −0.0977 (3) 0.3070 (3) 0.0545 (5)*
H19c 0.6519 (4) −0.2418 (11) 0.3140 (2) 0.0545 (5)*
O20 0.41893 (9) 0.22626 (12) 0.23544 (2) 0.0241 (2)
C21 0.32565 (14) 0.37026 (19) 0.21353 (4) 0.0291 (3)
H21a 0.3150 (9) 0.3372 (8) 0.18431 (5) 0.0436 (4)*
H21b 0.2278 (4) 0.3696 (10) 0.2238 (2) 0.0436 (4)*
H21c 0.3702 (6) 0.5028 (3) 0.2175 (2) 0.0436 (4)*
O22 1.05851 (9) 0.53419 (14) 0.35250 (3) 0.0282 (2)
C23 1.00672 (13) 0.37103 (19) 0.32693 (4) 0.0289 (3)
H23a 1.0801 (5) 0.3403 (9) 0.3079 (2) 0.0433 (4)*
H23b 0.9924 (10) 0.2541 (4) 0.34395 (4) 0.0433 (4)*
H23c 0.9122 (5) 0.4069 (5) 0.3114 (2) 0.0433 (4)*
O24 1.14269 (9) 0.85526 (14) 0.39014 (3) 0.0324 (2)
C25 1.20004 (16) 1.0296 (2) 0.41170 (4) 0.0373 (3)
H25a 1.2970 (6) 1.0637 (10) 0.4028 (3) 0.0559 (5)*
H25b 1.1312 (6) 1.1410 (5) 0.4058 (3) 0.0559 (5)*
H25c 1.2110 (12) 1.0031 (6) 0.44120 (5) 0.0559 (5)*
C30 0.18953 (12) 0.55150 (17) 0.48065 (3) 0.0206 (2)
O31 0.26149 (9) 0.45088 (13) 0.45496 (3) 0.0256 (2)
H31 0.3443 (7) 0.5047 (14) 0.4531 (4) 0.0384 (3)*
O32 0.23373 (9) 0.70574 (13) 0.49758 (3) 0.0272 (2)
C33 0.04511 (12) 0.45913 (17) 0.48787 (3) 0.0213 (2)
H33 0.01702 (12) 0.33727 (17) 0.47454 (3) 0.0256 (3)*

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0193 (4) 0.0212 (5) 0.0225 (5) −0.0011 (4) 0.0023 (4) −0.0005 (4)
C2 0.0174 (5) 0.0194 (6) 0.0189 (5) −0.0011 (4) −0.0002 (4) 0.0019 (4)
C3 0.0178 (5) 0.0175 (5) 0.0188 (5) −0.0022 (4) −0.0011 (4) 0.0029 (4)
C4 0.0191 (5) 0.0184 (5) 0.0213 (5) −0.0041 (4) 0.0002 (4) 0.0003 (4)
C5 0.0196 (5) 0.0252 (6) 0.0207 (5) −0.0036 (5) 0.0024 (4) 0.0016 (5)
C6 0.0226 (6) 0.0275 (6) 0.0209 (5) −0.0114 (5) 0.0002 (4) 0.0043 (5)
C7 0.0271 (6) 0.0196 (6) 0.0209 (5) −0.0084 (5) −0.0022 (4) 0.0012 (4)
C8 0.0227 (5) 0.0175 (6) 0.0189 (5) −0.0024 (4) −0.0025 (4) 0.0035 (4)
C9 0.0280 (6) 0.0178 (6) 0.0214 (5) −0.0016 (5) −0.0012 (4) −0.0014 (4)
C10 0.0251 (6) 0.0211 (6) 0.0236 (6) 0.0010 (5) 0.0024 (4) −0.0019 (5)
C11 0.0183 (5) 0.0190 (6) 0.0250 (6) −0.0048 (4) 0.0041 (4) 0.0004 (4)
C12 0.0144 (5) 0.0185 (5) 0.0251 (6) −0.0061 (4) 0.0034 (4) −0.0014 (4)
C13 0.0163 (5) 0.0178 (5) 0.0272 (6) −0.0009 (4) 0.0014 (4) 0.0009 (4)
C14 0.0180 (5) 0.0177 (5) 0.0271 (6) 0.0001 (4) 0.0045 (4) −0.0026 (4)
C15 0.0172 (5) 0.0194 (5) 0.0234 (5) −0.0031 (4) 0.0022 (4) −0.0007 (4)
C16 0.0180 (5) 0.0195 (6) 0.0290 (6) 0.0011 (4) 0.0006 (4) 0.0001 (5)
C17 0.0185 (5) 0.0192 (6) 0.0282 (6) −0.0003 (4) 0.0040 (4) −0.0046 (5)
O18 0.0330 (4) 0.0255 (4) 0.0267 (4) 0.0120 (4) 0.0012 (3) −0.0044 (3)
C19 0.0401 (7) 0.0313 (7) 0.0368 (7) 0.0189 (6) 0.0001 (6) −0.0051 (6)
O20 0.0265 (4) 0.0225 (4) 0.0228 (4) 0.0041 (3) 0.0006 (3) −0.0012 (3)
C21 0.0370 (7) 0.0237 (6) 0.0259 (6) 0.0057 (5) 0.0000 (5) 0.0030 (5)
O22 0.0229 (4) 0.0333 (5) 0.0300 (4) −0.0099 (4) 0.0098 (3) −0.0059 (4)
C23 0.0282 (6) 0.0286 (7) 0.0314 (6) −0.0063 (5) 0.0111 (5) −0.0056 (5)
O24 0.0281 (4) 0.0398 (5) 0.0303 (4) −0.0218 (4) 0.0071 (3) −0.0050 (4)
C25 0.0372 (7) 0.0431 (8) 0.0313 (6) −0.0279 (6) 0.0021 (5) −0.0028 (6)
C30 0.0217 (5) 0.0200 (6) 0.0200 (5) −0.0001 (4) 0.0019 (4) 0.0010 (4)
O31 0.0217 (4) 0.0257 (4) 0.0307 (4) −0.0044 (3) 0.0092 (3) −0.0064 (3)
O32 0.0252 (4) 0.0246 (5) 0.0326 (4) −0.0063 (3) 0.0071 (3) −0.0078 (4)
C33 0.0223 (5) 0.0197 (6) 0.0218 (5) −0.0019 (4) 0.0014 (4) −0.0011 (4)

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Geometric parameters (Å, º)

N1—C2 1.3245 (14) C15—C16 1.3817 (16)
N1—C10 1.3652 (15) C15—O20 1.3688 (13)
C2—C3 1.4195 (15) C16—H16 0.9500
C2—C11 1.5053 (15) C16—C17 1.3984 (16)
C3—C4 1.4187 (16) C17—H17 0.9500
C3—C8 1.4172 (16) O18—C19 1.4288 (15)
C4—H4 0.9500 C19—H19a 0.9800
C4—C5 1.3670 (15) C19—H19b 0.9800
C5—C6 1.4386 (17) C19—H19c 0.9800
C5—O22 1.3561 (14) O20—C21 1.4285 (14)
C6—C7 1.3670 (17) C21—H21a 0.9800
C6—O24 1.3533 (14) C21—H21b 0.9800
C7—H7 0.9500 C21—H21c 0.9800
C7—C8 1.4211 (16) O22—C23 1.4296 (15)
C8—C9 1.4145 (16) C23—H23a 0.9800
C9—H9 0.9500 C23—H23b 0.9800
C9—C10 1.3602 (17) C23—H23c 0.9800
C10—H10 0.9500 O24—C25 1.4372 (15)
C11—H11a 0.9900 C25—H25a 0.9800
C11—H11b 0.9900 C25—H25b 0.9800
C11—C12 1.5183 (15) C25—H25c 0.9800
C12—C13 1.4011 (16) C30—O31 1.3064 (14)
C12—C17 1.3819 (16) C30—O32 1.2230 (14)
C13—H13 0.9500 C30—C33 1.4884 (16)
C13—C14 1.3880 (16) O31—H31 0.8400
C14—C15 1.4120 (16) C33—C33i 1.319 (2)
C14—O18 1.3684 (14) C33—H33 0.9500
C10—N1—C2 119.83 (10) C16—C15—C14 119.43 (10)
C3—C2—N1 121.62 (10) O20—C15—C14 115.67 (10)
C11—C2—N1 117.02 (9) O20—C15—C16 124.90 (10)
C11—C2—C3 121.27 (10) H16—C16—C15 119.68 (7)
C4—C3—C2 122.15 (10) C17—C16—C15 120.64 (10)
C8—C3—C2 118.28 (10) C17—C16—H16 119.68 (7)
C8—C3—C4 119.55 (10) C16—C17—C12 120.38 (10)
H4—C4—C3 119.75 (6) H17—C17—C12 119.81 (7)
C5—C4—C3 120.49 (10) H17—C17—C16 119.81 (7)
C5—C4—H4 119.75 (7) C19—O18—C14 117.12 (9)
C6—C5—C4 120.02 (10) H19a—C19—O18 109.5
O22—C5—C4 125.12 (11) H19b—C19—O18 109.5
O22—C5—C6 114.86 (10) H19b—C19—H19a 109.5
C7—C6—C5 120.18 (10) H19c—C19—O18 109.5
O24—C6—C5 114.08 (10) H19c—C19—H19a 109.5
O24—C6—C7 125.74 (11) H19c—C19—H19b 109.5
H7—C7—C6 119.75 (7) C21—O20—C15 116.43 (9)
C8—C7—C6 120.51 (10) H21a—C21—O20 109.5
C8—C7—H7 119.75 (7) H21b—C21—O20 109.5
C7—C8—C3 119.20 (10) H21b—C21—H21a 109.5
C9—C8—C3 118.26 (10) H21c—C21—O20 109.5
C9—C8—C7 122.54 (10) H21c—C21—H21a 109.5
H9—C9—C8 120.43 (6) H21c—C21—H21b 109.5
C10—C9—C8 119.14 (10) C23—O22—C5 116.42 (9)
C10—C9—H9 120.43 (7) H23a—C23—O22 109.5
C9—C10—N1 122.73 (11) H23b—C23—O22 109.5
H10—C10—N1 118.63 (6) H23b—C23—H23a 109.5
H10—C10—C9 118.63 (7) H23c—C23—O22 109.5
H11a—C11—C2 108.51 (6) H23c—C23—H23a 109.5
H11b—C11—C2 108.51 (6) H23c—C23—H23b 109.5
H11b—C11—H11a 107.5 C25—O24—C6 117.14 (10)
C12—C11—C2 115.05 (9) H25a—C25—O24 109.5
C12—C11—H11a 108.51 (5) H25b—C25—O24 109.5
C12—C11—H11b 108.51 (6) H25b—C25—H25a 109.5
C13—C12—C11 119.63 (10) H25c—C25—O24 109.5
C17—C12—C11 121.16 (10) H25c—C25—H25a 109.5
C17—C12—C13 119.20 (10) H25c—C25—H25b 109.5
H13—C13—C12 119.55 (6) O32—C30—O31 124.73 (10)
C14—C13—C12 120.90 (10) C33—C30—O31 113.12 (10)
C14—C13—H13 119.55 (7) C33—C30—O32 122.15 (10)
C15—C14—C13 119.43 (10) H31—O31—C30 109.5
O18—C14—C13 125.11 (10) C33i—C33—C30 122.17 (13)
O18—C14—C15 115.46 (10) H33—C33—C30 118.91 (6)
N1—C2—C3—C4 −177.32 (10) C5—C6—C7—C8 1.10 (13)
N1—C2—C3—C8 4.06 (12) C5—C6—O24—C25 −175.75 (11)
N1—C2—C11—C12 113.81 (10) C6—C7—C8—C9 179.76 (11)
N1—C10—C9—C8 2.72 (13) C7—C8—C9—C10 179.60 (11)
C2—C3—C4—C5 −178.66 (11) C11—C12—C13—C14 −179.55 (10)
C2—C3—C8—C7 177.22 (10) C11—C12—C17—C16 179.76 (10)
C2—C3—C8—C9 −1.70 (12) C12—C13—C14—C15 −0.40 (12)
C2—C11—C12—C13 133.10 (9) C12—C13—C14—O18 179.50 (10)
C2—C11—C12—C17 −47.48 (11) C12—C17—C16—C15 0.01 (13)
C3—C4—C5—C6 2.05 (12) C13—C14—C15—C16 −0.41 (12)
C3—C4—C5—O22 −177.78 (10) C13—C14—C15—O20 −179.63 (10)
C3—C8—C7—C6 0.89 (12) C13—C14—O18—C19 −0.69 (14)
C3—C8—C9—C10 −1.52 (12) C14—C15—C16—C17 0.61 (12)
C4—C5—C6—C7 −2.60 (13) C14—C15—O20—C21 −177.02 (10)
C4—C5—C6—O24 177.69 (11) C30—C33—C33i—C30i 180.00 (14)
C4—C5—O22—C23 9.21 (14)

Symmetry code: (i) −x, −y+1, −z+1.

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/1) (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O31—H31···N1 0.84 (1) 1.73 (1) 2.5687 (12) 175 (1)
C9—H9···O32ii 0.95 (1) 2.27 (1) 3.2191 (14) 176 (1)

Symmetry code: (ii) −x+1, −y+2, −z+1.

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Crystal data

C20H22NO4·1.5C4H4O4 Z = 2
Mr = 513.48 F(000) = 540
Triclinic, P1 Dx = 1.405 Mg m3
a = 9.5290 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.5445 (3) Å Cell parameters from 6061 reflections
c = 12.6509 (4) Å θ = 3.6–68.1°
α = 91.606 (2)° µ = 0.92 mm1
β = 104.980 (2)° T = 100 K
γ = 97.823 (2)° Block, clear light colourless
V = 1213.87 (6) Å3 0.17 × 0.08 × 0.03 mm

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 4366 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 3457 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.026
Detector resolution: 10.0000 pixels mm-1 θmax = 68.0°, θmin = 3.6°
ω scans h = −11→5
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −12→12
Tmin = 0.862, Tmax = 1.000 l = −15→15
10089 measured reflections

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.410P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.38 e Å3
4366 reflections Δρmin = −0.39 e Å3
382 parameters Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
282 restraints Extinction coefficient: 0.0009 (3)
Primary atom site location: structure-invariant direct methods

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.46197 (17) 0.81758 (17) 0.51609 (18) 0.0444 (5)
H1 0.543685 0.850236 0.500466 0.053*
C2 0.3393 (2) 0.79572 (18) 0.43509 (19) 0.0359 (5)
C3 0.20717 (19) 0.74256 (17) 0.45885 (17) 0.0303 (4)
C4 0.07358 (18) 0.71542 (17) 0.37492 (16) 0.0286 (4)
H4 0.073022 0.730035 0.301067 0.034*
C5 −0.05396 (18) 0.66853 (17) 0.39956 (16) 0.0289 (4)
C6 −0.05444 (19) 0.64893 (17) 0.51115 (17) 0.0301 (4)
C7 0.0738 (2) 0.67300 (17) 0.59334 (17) 0.0326 (4)
H7 0.072747 0.659166 0.667034 0.039*
C8 0.2077 (2) 0.71842 (17) 0.56852 (17) 0.0320 (4)
C9 0.3442 (2) 0.7438 (2) 0.6496 (2) 0.0430 (5)
H9 0.349081 0.726778 0.723680 0.052*
C10 0.4681 (2) 0.7924 (2) 0.6211 (2) 0.0492 (6)
H10 0.559426 0.808756 0.675412 0.059*
C11 0.3489 (2) 0.83103 (18) 0.3232 (2) 0.0404 (5)
H11A 0.440287 0.891577 0.330194 0.049*
H11B 0.264971 0.875706 0.289528 0.049*
C12 0.3477 (2) 0.71580 (18) 0.24786 (19) 0.0356 (5)
C13 0.2463 (2) 0.69676 (18) 0.14486 (19) 0.0359 (5)
H13 0.176960 0.754304 0.123955 0.043*
C14 0.2456 (2) 0.59499 (19) 0.07283 (18) 0.0352 (4)
C15 0.3481 (2) 0.50903 (18) 0.10481 (17) 0.0338 (4)
C16 0.4475 (2) 0.52812 (18) 0.20657 (17) 0.0342 (4)
H16 0.515980 0.470031 0.228377 0.041*
C17 0.4487 (2) 0.63203 (18) 0.27815 (18) 0.0343 (4)
H17 0.518893 0.645061 0.347593 0.041*
O18 0.15271 (16) 0.56999 (14) −0.02976 (13) 0.0416 (4)
C19 0.0454 (2) 0.6537 (2) −0.0642 (2) 0.0451 (5)
H19A −0.018009 0.622919 −0.137013 0.068*
H19B 0.095157 0.740628 −0.067495 0.068*
H19C −0.014298 0.654835 −0.011816 0.068*
O20 0.33975 (16) 0.41301 (14) 0.02746 (12) 0.0415 (4)
C21 0.4403 (3) 0.3231 (2) 0.05620 (19) 0.0458 (5)
H21A 0.429616 0.263692 −0.007301 0.069*
H21B 0.419471 0.274827 0.116846 0.069*
H21C 0.540978 0.369063 0.078816 0.069*
O22 −0.18676 (13) 0.63998 (14) 0.32630 (12) 0.0370 (3)
C23 −0.1929 (2) 0.6669 (3) 0.21502 (19) 0.0514 (6)
H23A −0.295060 0.649292 0.170510 0.077*
H23B −0.133712 0.612563 0.186378 0.077*
H23C −0.154234 0.757365 0.212015 0.077*
O24 −0.18929 (14) 0.60799 (13) 0.52392 (12) 0.0375 (3)
C25 −0.2027 (3) 0.6004 (2) 0.63391 (19) 0.0451 (5)
H25A −0.305854 0.573898 0.632334 0.068*
H25B −0.167756 0.684678 0.673616 0.068*
H25C −0.143486 0.537523 0.670996 0.068*
C34 0.6558 (2) 1.03159 (19) 0.13490 (18) 0.0369 (5)
O35 0.60430 (18) 0.93880 (15) 0.18930 (13) 0.0484 (4)
H35 0.654420 0.946279 0.254974 0.073*
O36 0.76487 (17) 1.10891 (15) 0.17335 (14) 0.0477 (4)
C37 0.5660 (2) 1.03429 (18) 0.02071 (18) 0.0368 (5)
H37 0.605453 1.088822 −0.026367 0.044*
C38 0.9160 (2) 0.9597 (2) 0.8450 (2) 0.0504 (6)
O39A 0.9425 (5) 1.0085 (3) 0.7594 (3) 0.0410 (9) 0.598 (9)
H39A 0.883696 0.969476 0.703076 0.062* 0.598 (9)
O39B 0.9637 (9) 1.0502 (9) 0.7980 (9) 0.091 (3) 0.402 (9)
O40A 0.8223 (6) 0.8669 (5) 0.8449 (3) 0.0554 (11) 0.598 (9)
O40B 0.8172 (9) 0.8612 (7) 0.8033 (9) 0.095 (3) 0.402 (9)
H40B 0.804 (10) 0.868 (7) 0.7354 (12) 0.142* 0.402 (9)
C41A 1.0105 (5) 1.0188 (5) 0.9512 (4) 0.0314 (11) 0.598 (9)
H41A 1.088580 1.085283 0.951450 0.038* 0.598 (9)
C41B 0.9522 (9) 0.9608 (9) 0.9704 (8) 0.047 (2) 0.402 (9)
H41B 0.898144 0.898230 1.002913 0.057* 0.402 (9)
C30 0.7944 (2) 0.94153 (17) 0.48749 (18) 0.0334 (4)
O31 0.69127 (18) 0.92626 (15) 0.40213 (14) 0.0491 (4)
O32 0.77542 (17) 0.91662 (14) 0.57896 (13) 0.0448 (4)
C33A 0.9361 (4) 0.9954 (2) 0.4628 (4) 0.0278 (11) 0.742 (11)
H33A 0.933667 1.023721 0.391822 0.033* 0.742 (11)
C33B 0.9632 (11) 0.9786 (7) 0.5352 (10) 0.030 (3) 0.258 (11)
H33B 1.010435 0.971108 0.610235 0.036* 0.258 (11)

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0222 (8) 0.0367 (9) 0.0710 (14) 0.0039 (6) 0.0085 (8) −0.0155 (9)
C2 0.0237 (9) 0.0261 (9) 0.0583 (13) 0.0035 (7) 0.0131 (9) −0.0100 (8)
C3 0.0228 (8) 0.0239 (8) 0.0446 (12) 0.0056 (6) 0.0094 (8) −0.0053 (8)
C4 0.0246 (8) 0.0280 (9) 0.0347 (10) 0.0044 (7) 0.0105 (8) −0.0023 (7)
C5 0.0223 (8) 0.0281 (9) 0.0354 (10) 0.0033 (7) 0.0072 (7) −0.0049 (7)
C6 0.0272 (9) 0.0252 (9) 0.0406 (11) 0.0032 (7) 0.0145 (8) −0.0021 (8)
C7 0.0372 (10) 0.0276 (9) 0.0349 (11) 0.0093 (7) 0.0107 (8) 0.0002 (8)
C8 0.0286 (9) 0.0263 (9) 0.0402 (11) 0.0097 (7) 0.0052 (8) −0.0047 (8)
C9 0.0397 (11) 0.0355 (11) 0.0476 (13) 0.0164 (8) −0.0039 (9) −0.0101 (9)
C10 0.0257 (10) 0.0407 (12) 0.0709 (17) 0.0117 (8) −0.0066 (10) −0.0190 (11)
C11 0.0317 (10) 0.0281 (9) 0.0681 (15) −0.0007 (7) 0.0282 (10) −0.0027 (9)
C12 0.0284 (9) 0.0271 (9) 0.0590 (14) 0.0022 (7) 0.0260 (9) 0.0019 (9)
C13 0.0296 (9) 0.0301 (9) 0.0567 (13) 0.0094 (7) 0.0236 (9) 0.0100 (9)
C14 0.0332 (10) 0.0347 (10) 0.0450 (12) 0.0082 (8) 0.0211 (9) 0.0106 (8)
C15 0.0362 (10) 0.0319 (9) 0.0418 (12) 0.0106 (8) 0.0218 (9) 0.0071 (8)
C16 0.0334 (9) 0.0323 (10) 0.0445 (12) 0.0113 (7) 0.0199 (9) 0.0060 (8)
C17 0.0270 (9) 0.0332 (10) 0.0475 (12) 0.0029 (7) 0.0197 (8) 0.0002 (8)
O18 0.0433 (8) 0.0432 (8) 0.0438 (9) 0.0172 (6) 0.0150 (7) 0.0102 (7)
C19 0.0401 (11) 0.0467 (12) 0.0550 (14) 0.0166 (9) 0.0175 (10) 0.0168 (11)
O20 0.0536 (8) 0.0386 (8) 0.0389 (8) 0.0213 (7) 0.0164 (7) 0.0036 (6)
C21 0.0624 (14) 0.0410 (12) 0.0420 (13) 0.0261 (10) 0.0182 (11) 0.0036 (10)
O22 0.0212 (6) 0.0521 (8) 0.0353 (8) 0.0007 (5) 0.0062 (5) −0.0040 (6)
C23 0.0283 (10) 0.0872 (18) 0.0347 (12) 0.0023 (10) 0.0051 (9) 0.0011 (12)
O24 0.0320 (7) 0.0389 (7) 0.0457 (9) −0.0017 (5) 0.0213 (6) −0.0004 (6)
C25 0.0530 (13) 0.0430 (12) 0.0507 (14) 0.0094 (10) 0.0322 (11) 0.0067 (10)
C34 0.0422 (11) 0.0301 (10) 0.0452 (12) 0.0068 (8) 0.0227 (9) 0.0024 (8)
O35 0.0550 (9) 0.0476 (9) 0.0401 (9) −0.0056 (7) 0.0147 (7) 0.0075 (7)
O36 0.0445 (8) 0.0464 (9) 0.0528 (10) −0.0001 (7) 0.0169 (7) 0.0068 (7)
C37 0.0462 (11) 0.0294 (9) 0.0420 (12) 0.0073 (8) 0.0237 (9) 0.0034 (8)
C38 0.0472 (13) 0.0539 (14) 0.0506 (15) 0.0289 (11) 0.0036 (11) −0.0042 (11)
O39A 0.0466 (17) 0.0416 (16) 0.0310 (18) 0.0077 (12) 0.0045 (15) −0.0136 (12)
O39B 0.069 (4) 0.150 (6) 0.068 (6) 0.054 (5) 0.020 (4) 0.054 (5)
O40A 0.079 (3) 0.075 (3) 0.0154 (18) 0.0210 (18) 0.0145 (19) 0.0043 (17)
O40B 0.086 (4) 0.082 (4) 0.082 (6) 0.042 (3) −0.048 (4) −0.058 (4)
C41A 0.034 (2) 0.035 (2) 0.031 (3) 0.0118 (16) 0.0154 (18) 0.0083 (17)
C41B 0.043 (4) 0.050 (4) 0.048 (5) 0.021 (3) 0.002 (3) 0.005 (3)
C30 0.0262 (9) 0.0246 (9) 0.0509 (13) 0.0034 (7) 0.0140 (9) −0.0030 (8)
O31 0.0561 (9) 0.0458 (9) 0.0434 (9) 0.0058 (7) 0.0104 (8) 0.0035 (7)
O32 0.0540 (9) 0.0415 (8) 0.0426 (9) 0.0160 (7) 0.0147 (7) 0.0036 (7)
C33A 0.0264 (19) 0.0261 (13) 0.032 (2) 0.0037 (10) 0.0103 (15) 0.0011 (11)
C33B 0.033 (5) 0.026 (4) 0.030 (7) 0.006 (3) 0.003 (3) 0.001 (3)

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Geometric parameters (Å, º)

N1—H1 0.8800 C21—H21A 0.9800
N1—C2 1.328 (3) C21—H21B 0.9800
N1—C10 1.350 (3) C21—H21C 0.9800
C2—C3 1.415 (3) O22—C23 1.432 (3)
C2—C11 1.496 (3) C23—H23A 0.9800
C3—C4 1.419 (3) C23—H23B 0.9800
C3—C8 1.416 (3) C23—H23C 0.9800
C4—H4 0.9500 O24—C25 1.433 (3)
C4—C5 1.364 (3) C25—H25A 0.9800
C5—C6 1.434 (3) C25—H25B 0.9800
C5—O22 1.351 (2) C25—H25C 0.9800
C6—C7 1.372 (3) C34—O35 1.324 (2)
C6—O24 1.351 (2) C34—O36 1.211 (3)
C7—H7 0.9500 C34—C37 1.480 (3)
C7—C8 1.416 (3) O35—H35 0.8400
C8—C9 1.420 (3) C37—C37i 1.331 (4)
C9—H9 0.9500 C37—H37 0.9500
C9—C10 1.361 (4) C38—O39A 1.280 (4)
C10—H10 0.9500 C38—O39B 1.235 (5)
C11—H11A 0.9900 C38—O40A 1.231 (4)
C11—H11B 0.9900 C38—O40B 1.300 (5)
C11—C12 1.520 (3) C38—C41A 1.476 (6)
C12—C13 1.398 (3) C38—C41B 1.533 (10)
C12—C17 1.383 (3) O39A—H39A 0.8400
C13—H13 0.9500 O40B—H40B 0.843 (5)
C13—C14 1.386 (3) C41A—C41Aii 1.362 (9)
C14—C15 1.413 (3) C41A—H41A 0.9500
C14—O18 1.364 (3) C41B—C41Bii 1.218 (17)
C15—C16 1.378 (3) C41B—H41B 0.9500
C15—O20 1.368 (2) C30—O31 1.248 (3)
C16—H16 0.9500 C30—O32 1.246 (3)
C16—C17 1.399 (3) C30—C33A 1.504 (3)
C17—H17 0.9500 C30—C33B 1.555 (10)
O18—C19 1.432 (2) C33A—C33Aiii 1.322 (8)
C19—H19A 0.9800 C33A—H33A 0.9500
C19—H19B 0.9800 C33B—C33Biii 1.32 (2)
C19—H19C 0.9800 C33B—H33B 0.9500
O20—C21 1.427 (2)
C2—N1—H1 118.2 O18—C19—H19C 109.5
C2—N1—C10 123.56 (18) H19A—C19—H19B 109.5
C10—N1—H1 118.2 H19A—C19—H19C 109.5
N1—C2—C3 118.9 (2) H19B—C19—H19C 109.5
N1—C2—C11 117.53 (17) C15—O20—C21 116.92 (17)
C3—C2—C11 123.60 (18) O20—C21—H21A 109.5
C2—C3—C4 121.08 (19) O20—C21—H21B 109.5
C2—C3—C8 119.45 (18) O20—C21—H21C 109.5
C8—C3—C4 119.47 (16) H21A—C21—H21B 109.5
C3—C4—H4 119.8 H21A—C21—H21C 109.5
C5—C4—C3 120.47 (18) H21B—C21—H21C 109.5
C5—C4—H4 119.8 C5—O22—C23 116.43 (14)
C4—C5—C6 120.03 (17) O22—C23—H23A 109.5
O22—C5—C4 125.26 (18) O22—C23—H23B 109.5
O22—C5—C6 114.68 (15) O22—C23—H23C 109.5
C7—C6—C5 120.41 (16) H23A—C23—H23B 109.5
O24—C6—C5 113.56 (16) H23A—C23—H23C 109.5
O24—C6—C7 126.02 (18) H23B—C23—H23C 109.5
C6—C7—H7 119.9 C6—O24—C25 117.25 (16)
C6—C7—C8 120.11 (19) O24—C25—H25A 109.5
C8—C7—H7 119.9 O24—C25—H25B 109.5
C3—C8—C9 117.70 (18) O24—C25—H25C 109.5
C7—C8—C3 119.43 (17) H25A—C25—H25B 109.5
C7—C8—C9 122.9 (2) H25A—C25—H25C 109.5
C8—C9—H9 120.0 H25B—C25—H25C 109.5
C10—C9—C8 120.0 (2) O35—C34—C37 113.63 (18)
C10—C9—H9 120.0 O36—C34—O35 124.4 (2)
N1—C10—C9 120.4 (2) O36—C34—C37 121.98 (19)
N1—C10—H10 119.8 C34—O35—H35 109.5
C9—C10—H10 119.8 C34—C37—H37 117.7
C2—C11—H11A 109.0 C37i—C37—C34 124.6 (2)
C2—C11—H11B 109.0 C37i—C37—H37 117.7
C2—C11—C12 113.08 (16) O39A—C38—C41A 116.0 (3)
H11A—C11—H11B 107.8 O39B—C38—O40B 128.8 (6)
C12—C11—H11A 109.0 O39B—C38—C41B 121.7 (6)
C12—C11—H11B 109.0 O40A—C38—O39A 125.4 (3)
C13—C12—C11 119.44 (18) O40A—C38—C41A 118.6 (3)
C17—C12—C11 121.0 (2) O40B—C38—C41B 108.9 (6)
C17—C12—C13 119.51 (19) C38—O39A—H39A 109.5
C12—C13—H13 119.6 C38—O40B—H40B 102 (4)
C14—C13—C12 120.86 (18) C38—C41A—H41A 118.9
C14—C13—H13 119.6 C41Aii—C41A—C38 122.3 (7)
C13—C14—C15 119.3 (2) C41Aii—C41A—H41A 118.9
O18—C14—C13 125.05 (18) C38—C41B—H41B 118.9
O18—C14—C15 115.65 (18) C41Bii—C41B—C38 122.2 (15)
C16—C15—C14 119.54 (19) C41Bii—C41B—H41B 118.9
O20—C15—C14 114.80 (19) O31—C30—C33A 110.7 (2)
O20—C15—C16 125.64 (17) O31—C30—C33B 145.1 (5)
C15—C16—H16 119.6 O32—C30—O31 122.17 (17)
C15—C16—C17 120.76 (18) O32—C30—C33A 127.1 (2)
C17—C16—H16 119.6 O32—C30—C33B 92.6 (5)
C12—C17—C16 120.0 (2) C30—C33A—H33A 119.1
C12—C17—H17 120.0 C33Aiii—C33A—C30 121.9 (4)
C16—C17—H17 120.0 C33Aiii—C33A—H33A 119.1
C14—O18—C19 117.23 (17) C30—C33B—H33B 122.1
O18—C19—H19A 109.5 C33Biii—C33B—C30 115.7 (13)
O18—C19—H19B 109.5 C33Biii—C33B—H33B 122.1
N1—C2—C3—C4 −178.96 (16) C11—C12—C13—C14 177.90 (16)
N1—C2—C3—C8 2.3 (3) C11—C12—C17—C16 −178.71 (16)
N1—C2—C11—C12 103.3 (2) C12—C13—C14—C15 0.6 (3)
C2—N1—C10—C9 −1.0 (3) C12—C13—C14—O18 −178.84 (17)
C2—C3—C4—C5 −177.63 (17) C13—C12—C17—C16 −0.9 (3)
C2—C3—C8—C7 175.96 (16) C13—C14—C15—C16 −0.4 (3)
C2—C3—C8—C9 −2.8 (3) C13—C14—C15—O20 −179.14 (16)
C2—C11—C12—C13 127.20 (19) C13—C14—O18—C19 −1.7 (3)
C2—C11—C12—C17 −55.0 (2) C14—C15—C16—C17 −0.5 (3)
C3—C2—C11—C12 −77.7 (2) C14—C15—O20—C21 −179.53 (17)
C3—C4—C5—C6 1.4 (3) C15—C14—O18—C19 178.86 (16)
C3—C4—C5—O22 179.76 (16) C15—C16—C17—C12 1.1 (3)
C3—C8—C9—C10 1.5 (3) C16—C15—O20—C21 1.8 (3)
C4—C3—C8—C7 −2.8 (3) C17—C12—C13—C14 0.1 (3)
C4—C3—C8—C9 178.42 (16) O18—C14—C15—C16 179.10 (16)
C4—C5—C6—C7 −2.2 (3) O18—C14—C15—O20 0.3 (2)
C4—C5—C6—O24 177.01 (16) O20—C15—C16—C17 178.15 (16)
C4—C5—O22—C23 −2.8 (3) O22—C5—C6—C7 179.25 (16)
C5—C6—C7—C8 0.5 (3) O22—C5—C6—O24 −1.5 (2)
C5—C6—O24—C25 −172.83 (16) O24—C6—C7—C8 −178.63 (17)
C6—C5—O22—C23 175.66 (18) O35—C34—C37—C37i 10.4 (3)
C6—C7—C8—C3 2.0 (3) O36—C34—C37—C37i −168.9 (2)
C6—C7—C8—C9 −179.28 (17) O39A—C38—C41A—C41Aii 176.4 (4)
C7—C6—O24—C25 6.3 (3) O39B—C38—C41B—C41Bii −12.6 (10)
C7—C8—C9—C10 −177.25 (18) O40A—C38—C41A—C41Aii −5.6 (6)
C8—C3—C4—C5 1.1 (3) O40B—C38—C41B—C41Bii 175.7 (8)
C8—C9—C10—N1 0.4 (3) O31—C30—C33A—C33Aiii −171.1 (3)
C10—N1—C2—C3 −0.3 (3) O31—C30—C33B—C33Biii 7.3 (12)
C10—N1—C2—C11 178.75 (18) O32—C30—C33A—C33Aiii 10.5 (4)
C11—C2—C3—C4 2.0 (3) O32—C30—C33B—C33Biii −176.6 (8)
C11—C2—C3—C8 −176.73 (16)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z+2; (iii) −x+2, −y+2, −z+1.

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline–fumaric acid (2/3) (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O31 0.88 2.20 3.034 (3) 159
N1—H1···O32 0.88 2.18 2.919 (2) 141
O35—H35···O31 0.84 1.83 2.617 (2) 156
O39A—H39A···O32 0.84 1.67 2.502 (4) 169

Selected geometric parameters (Å) for fumaric acid A, B, and C in compound (I)

C30–O31 1.248 (2)
C30–O32 1.246 (3)
C34–O35 1.324 (3)
C34–O36 1.211 (2)
C38–O39Aa 1.280 (5)
C38–O40Aa 1.231 (6)

References

  1. Baggio, R. F. & Baggio, S. (1973). Cryst. Struct. Commun.2, 251–253.
  2. Bharate, S. S. (2021). Pharm. Res.38, 1307–1326. [DOI] [PubMed]
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Chen, J.-M., Wang, Z.-Z., Wu, C.-B., Li, S. & Lu, T.-B. (2012). CrystEngComm, 14, 6221–6229.
  5. Childs, S. L., Stahly, P. & Park, A. (2007). Mol. Pharm.4, 3, 323–338. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kang, D., Qiang, G., Du, L. & Du, G. (2018). Papaverine. In Natural Small Molecule Drugs from Plants. Springer, Singapore.
  9. Kawajiri, T., Kijima, A., Iimuro, A., Ohashi, E., Yamakawa, K., Agura, K., Masuda, K., Kouki, K., Kasamatsu, K., Yanagisawa, S., Nakashima, S., Shibahara, S., Toyota, T., Higuchi, T., Suto, T., Oohara, T., Maki, T., Sahara, N., Fukui, N., Wakamori, H., Ikemoto, H., Murakami, H., Ando, H., Hosoya, M., Sato, M., Suzuki, Y., Nakagawa, Y., Unoh, Y., Hirano, Y., Nagasawa, Y., Goda, S., Ohara, T. & Tsuritani, T. (2023). ACS Cent. Sci. 9, 836–843 [DOI] [PMC free article] [PubMed]
  10. Kotte, L., Pendota, V., Sreedhar, B. & Nanubolu, J. B. (2023). CrystEngComm, 25, 2662–2678.
  11. Marek, J., Dostal, J. & Slavik, J. (1997). Z. Kristallogr. Cryst. Mater.211, 649–650.
  12. Reynolds, C. D., Palmer, R. A. & Gorinsky, B. (1974). J. Cryst. Mol. Struct.4, 213–225.
  13. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Steiner, T. (1997). Chem. Commun. pp. 727–734.
  17. Stevens, J. S., Coultas, S., Jaye, C., Fischer, D. A. & Schroeder, S. L. M. (2020). Phys. Chem. Chem. Phys.22, 4916–4923. [DOI] [PubMed]
  18. Thipparaboina, R., Kumar, D., Mittapalli, S., Balasubramanian, S., Nangia, A. & Shastri, N. R. (2015). Cryst. Growth Des.15, 12, 5816–5826.
  19. Tothadi, S., Shaikh, T. R., Gupta, S., Dandela, R., Vinod, C. P. & Nangia, A. K. (2021). Cryst. Growth Des.21, 2, 735–747.
  20. Van Hulle, A., Amelinckx, S. & Dekeyser, W. (1953). Acta Cryst.6, 664–665.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) II, I. DOI: 10.1107/S2056989024009794/ox2007sup1.cif

e-80-01146-sup1.cif (458.7KB, cif)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989024009794/ox2007IIsup3.hkl

e-80-01146-IIsup3.hkl (347.7KB, hkl)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024009794/ox2007Isup2.hkl

e-80-01146-Isup2.hkl (286.6KB, hkl)
e-80-01146-Isup4.mol (3.1KB, mol)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007Isup4.mol

e-80-01146-IIsup5.mol (3.1KB, mol)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007IIsup5.mol

e-80-01146-Isup6.cml (19.2KB, cml)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007Isup6.cml

e-80-01146-IIsup7.cml (15.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024009794/ox2007IIsup7.cml

CCDC references: 2312143, 2312144

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES