Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Dec 10:2024.12.05.626723. [Version 1] doi: 10.1101/2024.12.05.626723

Aging and the Spectral Properties of Brain Hemodynamics

Ki Yun Park, Abraham Z Snyder, Manu S Goyal, Timothy O Laumann, John J Lee, Babatunde Adeyemo, Nicholas Metcalf, Andrei G Vlassenko, Joshua S Shimony, Eric C Leuthardt
PMCID: PMC11661102  PMID: 39713346

Abstract

Cerebral glucose metabolism (CMRGlc) systematically decreases with advancing age. We sought to identify correlates of decreased CMRGlc in the spectral properties of fMRI signals imaged in the task-free state. We analyzed lifespan resting-state fMRI data acquired in 455 healthy adults (ages 18-87 years) and cerebral metabolic data acquired in a separate cohort of 94 healthy adults (ages 25-45 years, 65-85 years). We characterized the spectral properties of the fMRI data in terms of the relative predominance of slow vs. fast activity using the spectral slope (SS) measure. We found that the relative proportion of fast activity increases with advancing age (SS flattening) across most cortical regions. The regional distribution of spectral slope was topographically correlated with CMRGlc in young adults. Notably, whereas most older adults maintained a youthful pattern of SS topography, a distinct subset of older adults significantly diverged from the youthful pattern. This subset of older adults also diverged from the youthful pattern of CMRGlc metabolism. This divergent pattern was associated with T2-weighted signal changes in frontal lobe white matter, an independent marker of small vessel disease. These findings suggest that BOLD signal spectral slope flattening may represent a biomarker of age-associated neurometabolic pathology.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES