Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Dec 12:2024.12.12.628180. [Version 1] doi: 10.1101/2024.12.12.628180

Dynamic cell fate plasticity and tissue integration drive functional synovial joint regeneration

Maria Blumenkrantz, Felicia Woron, Ernesto Gagarin, Everett Weinstein, Maryam H Kamel, Leonardo Campos, Agnieszka Geras, Troy Anderson, Julia Mo, Desmarie Sherwood, Maya Gwin, Bianca Dumitrascu, Nadeen O Chahine, Joanna Smeeton
PMCID: PMC11661154  PMID: 39713398

Abstract

Adult mammalian synovial joints have limited regenerative capacity, where injuries heal with mechanically inferior fibrotic tissues. Here we developed a unilateral whole-joint resection model in adult zebrafish to advance our understanding of how to stimulate regrowth of native synovial joint tissues. Using a combination of microCT, histological, live imaging, and single-cell RNA sequencing (scRNAseq) approaches after complete removal of all joint tissues, we find de novo regeneration of articular cartilage, ligament, and synovium into a functional joint. Clonal lineage tracing and scRNAseq implicate a multipotent, neural crest-derived population in the adult skeleton as a cell source for these regenerating tissues. Together, our findings reveal latent molecular and cellular programs within the adult skeleton that are deployed to regenerate a complex joint with lubricated articular cartilage.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES