Abstract
Phosphate-activated glutaminase (EC 3.5.1.2; l-glutamine amidohydrolase) purified from pig kidney and brain is activated by CoA and short-chain acyl-CoA derivatives. Acetyl-CoA is the most powerful activator (KA about 0.2mm). Acetyl-CoA is maximally effective in the absence of other activating anions such as phosphate and citrate, and at low glutamine concentrations. The negative co-operative substrate activation observed at pH7 becomes more pronounced in the presence of acetyl-CoA. Similarly to phosphate, acetyl-CoA produces at high protein concentrations a different type of activation, which is time-dependent, depends on protein concentration and is accompanied by an increase in the sedimentation coefficient. Acetyl-CoA, phosphate and citrate appear to have binding sites in common. No significant difference was observed between kidney and brain phosphate-activated glutaminase.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANTONINI E., WYMAN J., MORETTI R., ROSSI-FANELLI A. The interaction of bromthymol blue with hemoglobin and its effect on the oxygen equilibrium. Biochim Biophys Acta. 1963 Apr 2;71:124–138. doi: 10.1016/0006-3002(63)90991-0. [DOI] [PubMed] [Google Scholar]
- Cook R. A., Koshland D. E., Jr Positive and negative cooperativity in yeast glyceraldehyde 3-phosphate dehydrogenase. Biochemistry. 1970 Aug 18;9(17):3337–3342. doi: 10.1021/bi00819a007. [DOI] [PubMed] [Google Scholar]
- Crompton M., McGivan J. D., Chappell J. B. The intramitochondrial location of the glutaminase isoenzymes of pig kidney. Biochem J. 1973 Jan;132(1):27–34. doi: 10.1042/bj1320027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLINGMAN J. D., HANDLER P. Partial purification and properties of renal glutaminase. J Biol Chem. 1958 May;232(1):369–380. [PubMed] [Google Scholar]
- Kovacević Z., McGivan J. D., Chappell J. B. Conditions for activity of glutaminase in kidney mitochondria. Biochem J. 1970 Jun;118(2):265–274. doi: 10.1042/bj1180265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kvamme E., Tveit B., Svenneby G. Glutaminase from pig kidney, an allosteric protein. Biochem Biophys Res Commun. 1965 Sep 8;20(5):566–572. doi: 10.1016/0006-291x(65)90436-5. [DOI] [PubMed] [Google Scholar]
- Kvamme E., Tveit B., Svenneby G. Glutaminase from pig renal cortex. I. Purification and general properties. J Biol Chem. 1970 Apr 25;245(8):1871–1877. [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- Olsen B. R., Svenneby G., Kvamme E., Tveit B., Eskeland T. Formation and ultrastructure of enzymically active polymers of pig renal glutaminase. J Mol Biol. 1970 Sep 14;52(2):239–245. doi: 10.1016/0022-2836(70)90028-8. [DOI] [PubMed] [Google Scholar]
- Olsen B. R., Torgner I. A., Christensen T. B., Kvamme E. Ultrastructure of pig renal glutaminase. Evidence for conformational changes during polymer formation. J Mol Biol. 1973 Feb 25;74(2):239–251. doi: 10.1016/0022-2836(73)90109-5. [DOI] [PubMed] [Google Scholar]
- Scrutton M. C., Utter M. F. Pyruvate carboxylase. IX. Some properties of the activation by certain acyl derivatives of coenzyme A. J Biol Chem. 1967 Apr 25;242(8):1723–1735. [PubMed] [Google Scholar]
- Svenneby G. Activation of pig brain glutaminase. J Neurochem. 1971 Nov;18(11):2201–2208. doi: 10.1111/j.1471-4159.1971.tb05078.x. [DOI] [PubMed] [Google Scholar]
- Svenneby G. Pig brain glutaminase: purification and identification of different enzyme forms. J Neurochem. 1970 Nov;17(11):1591–1599. doi: 10.1111/j.1471-4159.1970.tb03729.x. [DOI] [PubMed] [Google Scholar]
- Svenneby G. Time and temperature dependent activation of pig brain glutaminase. J Neurochem. 1972 Jan;19(1):165–174. doi: 10.1111/j.1471-4159.1972.tb01266.x. [DOI] [PubMed] [Google Scholar]
- Svenneby G., Torgner I. A., Kvamme E. Purification of phosphate-dependent pig brain glutaminase. J Neurochem. 1973 Apr;20(4):1217–1224. doi: 10.1111/j.1471-4159.1973.tb00090.x. [DOI] [PubMed] [Google Scholar]
- Svenneby G., Tveit B., Kvamme E. Glutaminase from pig renal cortex. II. Activation by inorganic and organic anions. J Biol Chem. 1970 Apr 25;245(8):1878–1882. [PubMed] [Google Scholar]
- Tveit B., Svenneby G., Kvamme E. Kinetic properties of glutaminase from pig renal cortex. Eur J Biochem. 1970 Jun;14(2):337–344. doi: 10.1111/j.1432-1033.1970.tb00294.x. [DOI] [PubMed] [Google Scholar]
- Weil-Malherbe H., Beall G. D. Riboflavin 5'-phosphate: a potent activator or brain glutaminase. J Neurochem. 1970 Jul;17(7):1101–1103. doi: 10.1111/j.1471-4159.1970.tb02264.x. [DOI] [PubMed] [Google Scholar]
- Weil-Malherbe H. Modulators of glutaminase activity. J Neurochem. 1972 Oct;19(10):2257–2267. doi: 10.1111/j.1471-4159.1972.tb01279.x. [DOI] [PubMed] [Google Scholar]
