Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Mar;137(3):525–530. doi: 10.1042/bj1370525

The effect of acetyl-coenzyme A on phosphate-activated glutaminase from pig kidney and brain

Elling Kvamme 1, Ingeborg Aasland Torgner 1
PMCID: PMC1166152  PMID: 4370896

Abstract

Phosphate-activated glutaminase (EC 3.5.1.2; l-glutamine amidohydrolase) purified from pig kidney and brain is activated by CoA and short-chain acyl-CoA derivatives. Acetyl-CoA is the most powerful activator (KA about 0.2mm). Acetyl-CoA is maximally effective in the absence of other activating anions such as phosphate and citrate, and at low glutamine concentrations. The negative co-operative substrate activation observed at pH7 becomes more pronounced in the presence of acetyl-CoA. Similarly to phosphate, acetyl-CoA produces at high protein concentrations a different type of activation, which is time-dependent, depends on protein concentration and is accompanied by an increase in the sedimentation coefficient. Acetyl-CoA, phosphate and citrate appear to have binding sites in common. No significant difference was observed between kidney and brain phosphate-activated glutaminase.

Full text

PDF
525

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI E., WYMAN J., MORETTI R., ROSSI-FANELLI A. The interaction of bromthymol blue with hemoglobin and its effect on the oxygen equilibrium. Biochim Biophys Acta. 1963 Apr 2;71:124–138. doi: 10.1016/0006-3002(63)90991-0. [DOI] [PubMed] [Google Scholar]
  2. Cook R. A., Koshland D. E., Jr Positive and negative cooperativity in yeast glyceraldehyde 3-phosphate dehydrogenase. Biochemistry. 1970 Aug 18;9(17):3337–3342. doi: 10.1021/bi00819a007. [DOI] [PubMed] [Google Scholar]
  3. Crompton M., McGivan J. D., Chappell J. B. The intramitochondrial location of the glutaminase isoenzymes of pig kidney. Biochem J. 1973 Jan;132(1):27–34. doi: 10.1042/bj1320027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KLINGMAN J. D., HANDLER P. Partial purification and properties of renal glutaminase. J Biol Chem. 1958 May;232(1):369–380. [PubMed] [Google Scholar]
  6. Kovacević Z., McGivan J. D., Chappell J. B. Conditions for activity of glutaminase in kidney mitochondria. Biochem J. 1970 Jun;118(2):265–274. doi: 10.1042/bj1180265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kvamme E., Tveit B., Svenneby G. Glutaminase from pig kidney, an allosteric protein. Biochem Biophys Res Commun. 1965 Sep 8;20(5):566–572. doi: 10.1016/0006-291x(65)90436-5. [DOI] [PubMed] [Google Scholar]
  8. Kvamme E., Tveit B., Svenneby G. Glutaminase from pig renal cortex. I. Purification and general properties. J Biol Chem. 1970 Apr 25;245(8):1871–1877. [PubMed] [Google Scholar]
  9. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  10. Olsen B. R., Svenneby G., Kvamme E., Tveit B., Eskeland T. Formation and ultrastructure of enzymically active polymers of pig renal glutaminase. J Mol Biol. 1970 Sep 14;52(2):239–245. doi: 10.1016/0022-2836(70)90028-8. [DOI] [PubMed] [Google Scholar]
  11. Olsen B. R., Torgner I. A., Christensen T. B., Kvamme E. Ultrastructure of pig renal glutaminase. Evidence for conformational changes during polymer formation. J Mol Biol. 1973 Feb 25;74(2):239–251. doi: 10.1016/0022-2836(73)90109-5. [DOI] [PubMed] [Google Scholar]
  12. Scrutton M. C., Utter M. F. Pyruvate carboxylase. IX. Some properties of the activation by certain acyl derivatives of coenzyme A. J Biol Chem. 1967 Apr 25;242(8):1723–1735. [PubMed] [Google Scholar]
  13. Svenneby G. Activation of pig brain glutaminase. J Neurochem. 1971 Nov;18(11):2201–2208. doi: 10.1111/j.1471-4159.1971.tb05078.x. [DOI] [PubMed] [Google Scholar]
  14. Svenneby G. Pig brain glutaminase: purification and identification of different enzyme forms. J Neurochem. 1970 Nov;17(11):1591–1599. doi: 10.1111/j.1471-4159.1970.tb03729.x. [DOI] [PubMed] [Google Scholar]
  15. Svenneby G. Time and temperature dependent activation of pig brain glutaminase. J Neurochem. 1972 Jan;19(1):165–174. doi: 10.1111/j.1471-4159.1972.tb01266.x. [DOI] [PubMed] [Google Scholar]
  16. Svenneby G., Torgner I. A., Kvamme E. Purification of phosphate-dependent pig brain glutaminase. J Neurochem. 1973 Apr;20(4):1217–1224. doi: 10.1111/j.1471-4159.1973.tb00090.x. [DOI] [PubMed] [Google Scholar]
  17. Svenneby G., Tveit B., Kvamme E. Glutaminase from pig renal cortex. II. Activation by inorganic and organic anions. J Biol Chem. 1970 Apr 25;245(8):1878–1882. [PubMed] [Google Scholar]
  18. Tveit B., Svenneby G., Kvamme E. Kinetic properties of glutaminase from pig renal cortex. Eur J Biochem. 1970 Jun;14(2):337–344. doi: 10.1111/j.1432-1033.1970.tb00294.x. [DOI] [PubMed] [Google Scholar]
  19. Weil-Malherbe H., Beall G. D. Riboflavin 5'-phosphate: a potent activator or brain glutaminase. J Neurochem. 1970 Jul;17(7):1101–1103. doi: 10.1111/j.1471-4159.1970.tb02264.x. [DOI] [PubMed] [Google Scholar]
  20. Weil-Malherbe H. Modulators of glutaminase activity. J Neurochem. 1972 Oct;19(10):2257–2267. doi: 10.1111/j.1471-4159.1972.tb01279.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES