Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Jan;138(1):33–45. doi: 10.1042/bj1380033

The pancreatic β-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release

Bo Hellman 1, Lars-Åke Idahl 1, Åke Lernmark 1, Janove Sehlin 1, Inge-Bert Täljedal 1
PMCID: PMC1166172  PMID: 4601168

Abstract

The transport and oxidation of glucose, the content of fructose 1,6-diphosphate, and the release of insulin were studied in microdissected pancreatic islets of ob/ob mice incubated in Krebs–Ringer bicarbonate medium. Under control conditions glucose oxidation and insulin release showed a similar dependence on glucose concentration with the steepest slope in the range 5–12mm. The omission of Ca2+, or the substitution of choline ions for Na+, or the addition of diazoxide had little if any effect on glucose transport. However, Ca2+ or Na+ deficiency as well as diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine 1,1-dioxide) or ouabain partially inhibited glucose oxidation. These alterations of medium composition also increased the islet content of fructose 1,6-diphosphate, as did the addition of adrenaline. Phentolamine [2-N-(3-hydroxyphenyl)-p-toluidinomethyl-2-imidazoline] counteracted the effects of adrenaline and Ca2+ deficiency on islet fructose 1,6-diphosphate. After equilibration in Na+-deficient medium, the islets exhibited an increase in basal insulin release whereas the secretory response to glucose was inhibited. The inhibitory effects of Na+ deficiency on the secretory responses to different concentrations of glucose correlated with those on 14CO2 production. When islets were incubated with 17mm-glucose, the sudden replacement of Na+ by choline ions resulted in a marked but transient stimulation of insulin release that was not accompanied by a demonstrable increase of glucose oxidation. Galactose and 3-O-methylglucose had no effect on glucose oxidation or on insulin release. The results are consistent with a metabolic model of the β-cell recognition of glucose as insulin secretagogue and with the assumption that Ca2+ or Na+ deficiency, or the addition of adrenaline or diazoxide, inhibit insulin release at some step distal to stimulus recognition. In addition the results suggest that these conditions create a partial metabolic block of glycolysis in the β-cells. Hence the interrelationship between the processes of stimulus recognition and insulin discharge may involve a positive feedback of secretion on glucose metabolism.

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Bassett J. M., Randle P. J. Insulin secretion mechanisms and glucose metabolism in isolated islets. Diabetes. 1972;21(2 Suppl):538–545. [PubMed] [Google Scholar]
  2. Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom G. D., Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. Effects of organic mercurials on mammalian pancreatic -cells. Insulin release, glucose transport, glucose oxidation, membrane permeability and ultrastructure. Biochem J. 1972 Sep;129(2):241–254. doi: 10.1042/bj1290241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dean P. M., Matthews E. K. Electrical activity in pancreatic islet cells: effect of ions. J Physiol. 1970 Sep;210(2):265–275. doi: 10.1113/jphysiol.1970.sp009208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRODSKY G. M., BATTS A. A., BENNETT L. L., VCELLA C., MCWILLIAMS N. B., SMITH D. F. EFFECTS OF CARBOHYDRATES ON SECRETION OF INSULIN FROM ISOLATED RAT PANCREAS. Am J Physiol. 1963 Oct;205:638–644. doi: 10.1152/ajplegacy.1963.205.4.638. [DOI] [PubMed] [Google Scholar]
  7. Grodsky G. M., Bennett L. L. Cation requirements for insulin secretion in the isolated perfused pancreas. Diabetes. 1966 Dec;15(12):910–913. doi: 10.2337/diab.15.12.910. [DOI] [PubMed] [Google Scholar]
  8. Hales C. N., Milner R. D. Cations and the secretion of insulin from rabbit pancreas in vitro. J Physiol. 1968 Nov;199(1):177–187. doi: 10.1113/jphysiol.1968.sp008647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hales C. N., Milner R. D. The role of sodium and potassium in insulin secretion from rabbit pancreas. J Physiol. 1968 Feb;194(3):725–743. doi: 10.1113/jphysiol.1968.sp008433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hellerström C., Gunnarsson R. [Bioenergetics of islet function: oxygen utilization and oxidative metabolism in the beta-cells]. Acta Diabetol Lat. 1970 Sep;7 (Suppl 1):127–158. [PubMed] [Google Scholar]
  11. Hellman B., Idahl L. A., Danielsson A. Adenosine triphosphate levels of mammalian pancreatic B cells after stimulation with glucose and hypoglycemic sulfonylureas. Diabetes. 1969 Aug;18(8):509–516. doi: 10.2337/diab.18.8.509. [DOI] [PubMed] [Google Scholar]
  12. Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. Iodoacetamide-induced sensitization of the pancreatic beta-cells to glucose stimulation. Biochem J. 1973 Apr;132(4):775–789. doi: 10.1042/bj1320775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hellman B., Lernmark A., Sehlin J., Täljedal I. B. The pancreatic -cell recognition of insulin secretagogues. V. Binding and stimulatory action of phlorizin. Mol Pharmacol. 1972 Nov;8(6):759–769. [PubMed] [Google Scholar]
  14. Hellman B., Sehlin J., Täljedal I. B. Calcium uptake by pancreatic -cells as measured with the aid of 45 Ca and mannitol- 3 H. Am J Physiol. 1971 Dec;221(6):1795–1801. doi: 10.1152/ajplegacy.1971.221.6.1795. [DOI] [PubMed] [Google Scholar]
  15. Hellman B., Sehlin J., Täljedal I. B. Effect of adrenaline on glucose oxidation by pancreatic beta-cells. Med Exp Int J Exp Med. 1969;19(6):351–356. doi: 10.1159/000137220. [DOI] [PubMed] [Google Scholar]
  16. Hellman B., Sehlin J., Täljedal I. B. Evidence for mediated transport of glucose in mammalian pancreatic -cells. Biochim Biophys Acta. 1971 Jul 6;241(1):147–154. doi: 10.1016/0005-2736(71)90312-9. [DOI] [PubMed] [Google Scholar]
  17. Hellman B., Sehlin J., Täljedal I. B. Stereospecific glucose uptake by pancreatic -cells. Horm Metab Res. 1971 May;3(3):219–220. doi: 10.1055/s-0028-1096775. [DOI] [PubMed] [Google Scholar]
  18. Hellman B., Sehlin J., Täljedal I. B. Transport of -aminoisobutyric acid in mammalian pancretic -cells. Diabetologia. 1971 Aug;7(4):256–265. doi: 10.1007/BF01211878. [DOI] [PubMed] [Google Scholar]
  19. Hellman B., Sehlin J., Täljedal I. B. Transport of 3-O-methyl-D-glucose into mammalian pancreatic -cells. Pflugers Arch. 1973;340(1):51–58. doi: 10.1007/BF00592196. [DOI] [PubMed] [Google Scholar]
  20. Idahl L. A. A micro perifusion device for pancreatic islets allowing concomitant recordings of intermediate metabolites and insulin release. Anal Biochem. 1972 Dec;50(2):386–398. doi: 10.1016/0003-2697(72)90047-4. [DOI] [PubMed] [Google Scholar]
  21. Idahl L. A. Dynamics of pancreatic beta-cell responses to glucose. Diabetologia. 1973 Oct;9(5):403–412. doi: 10.1007/BF01239437. [DOI] [PubMed] [Google Scholar]
  22. Idahl L. A. Glucose-6-phosphate content in mammalian pancreatic beta-cells. Effects of various stimulators and inhibitors of insulin release. Hormones. 1971;2(6):371–377. [PubMed] [Google Scholar]
  23. Landgraf R., Kotler-Brajtburg J., Matschinsky F. M. Kinetics of insulin release from the perfused rat pancreas caused by glucose, glucosamine, and galactose. Proc Natl Acad Sci U S A. 1971 Mar;68(3):536–540. doi: 10.1073/pnas.68.3.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lernmark A., Hellman B. Effect of epinephrine and mannoheptulose on early and late phases of glucose-stimulated insulin release. Metabolism. 1970 Aug;19(8):614–618. doi: 10.1016/0026-0495(70)90018-1. [DOI] [PubMed] [Google Scholar]
  25. Lernmark A. [Isolated mouse islets as a model for studying insulin release]. Acta Diabetol Lat. 1971 Jul-Aug;8(4):649–679. doi: 10.1007/BF01550894. [DOI] [PubMed] [Google Scholar]
  26. Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. 3. Uptake of 45 calcium by isolated islets of Langerhans. Endocrinology. 1971 Jan;88(1):72–80. doi: 10.1210/endo-88-1-72. [DOI] [PubMed] [Google Scholar]
  27. Malaisse W. J., Malaisse-Lagae F., Brisson G. The stimulus-secretion coupling of glucose-induced insulin release. II. Interaction of alkali and alkaline earth cations. Horm Metab Res. 1971 Mar;3(2):65–70. doi: 10.1055/s-0028-1095029. [DOI] [PubMed] [Google Scholar]
  28. Malaisse W. J., Pipeleers D. G., Mahy M. The stimulus-secretion coupling of glucose-induced insulin release. XII. Effects of diazoxide and gliclazide upon 45 calcium efflux from perifused islets. Diabetologia. 1973 Feb;9(1):1–5. doi: 10.1007/BF01225992. [DOI] [PubMed] [Google Scholar]
  29. Matschinsky F. M., Ellerman J. Dissociation of the insulin releasing and the metabolic functions of hexoses in islets of Langerhans. Biochem Biophys Res Commun. 1973 Jan 23;50(2):193–199. doi: 10.1016/0006-291x(73)90826-7. [DOI] [PubMed] [Google Scholar]
  30. Matschinsky F. M., Passonneau J. V., Lowry O. H. Quantitative histochemical analysis of glycolytic intermediates and cofactors with an oil well technique. J Histochem Cytochem. 1968 Jan;16(1):29–39. doi: 10.1177/16.1.29. [DOI] [PubMed] [Google Scholar]
  31. Milner R. D., Hales C. N. The interaction of various inhibitors and stimuli of insulin release studied with rabbit pancreas in vitro. Biochem J. 1969 Jul;113(3):473–479. doi: 10.1042/bj1130473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sehlin Janove. Effect of mannoheptulose on the dynamics of glucose oxidation in the pancreatic beta-cells. FEBS Lett. 1973 Feb 15;30(1):45–48. doi: 10.1016/0014-5793(73)80615-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES