Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Mar;138(3):525–535. doi: 10.1042/bj1380525

Teichoic acid synthesis in Bacillus stearothermophilus

L D Kennedy 1,*
PMCID: PMC1166238  PMID: 4429546

Abstract

1. Particulate enzyme preparations obtained from Bacillus stearothermophilus B65 by digestion with lysozyme were shown to catalyse teichoic acid synthesis. With CDP-glycerol as sole substrate the preparations synthesized 1,3-poly(glycerol phosphate). It was characterized by alkaline hydrolysis, by glucosylation to the alkali-stable 2-glucosyl-1,3-poly(glycerol phosphate) with excess of UDP-glucose and a Bacillus subtilis Marburg enzyme system, by degradation of this latter product with 60%HF and periodate oxidation of the resulting glucosylglycerol. The specificity of the B. subtilis system previously reported (Glaser & Burger, 1964), was confirmed in the present work. 2. Pulse-labelling experiments, followed by periodate oxidation of the product and isolation of formaldehyde from the glycerol terminus of the polymer, showed that the B. stearothermophilus enzyme system transferred glycerol phosphate units to the glycerol end of the chain. The transfer reaction was irreversible. It was not determined if these poly(glycerol phosphate) chains were synthesized de novo, but it was shown that the newly synthesized oligomers were bound to much larger molecules. 3. When the B. stearothermophilus enzyme system was supplied with both CDP-glycerol and UDP-glucose, 1-glucosyl-2,3-poly(glycerol phosphate) was synthesized in addition to the 1,3-isomer. The former polymer was characterized by acid and alkaline hydrolysis, degradation with HF and periodate oxidation of the resulting glucosylglycerol, and periodate oxidation of the intact polymer followed by mild acid hydrolysis. This latter procedure removed the glucose substituents without disrupting the poly(glycerol phosphate) chain. 4. The poly(glycerol phosphate) isomers were distinguished by glucosylation with the B. subtilis enzymes and alkaline hydrolysis, the 2,3-isomer remaining alkali-labile. The proportion of 2,3-poly(glycerol phosphate) in the product increased with increasing amounts of UDP-glucose in the incubation mixture, but the total glycerol phosphate incorporated into products remained constant. It is suggested that the synthetic pathways of the two poly(glycerol phosphate) species may share a rate-limiting step.

Full text

PDF
525

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M. Photophosphorylation as a tool for the synthesis of specifically labeled nucleotides. Anal Biochem. 1961 Dec;2:535–543. doi: 10.1016/0003-2697(61)90021-5. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G., Hussey H., Baddiley J. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J. 1972 Mar;127(1):11–25. doi: 10.1042/bj1270011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archibald A. R., Baddiley J., Blumsom N. L. The teichoic acids. Adv Enzymol Relat Areas Mol Biol. 1968;30:223–253. doi: 10.1002/9780470122754.ch5. [DOI] [PubMed] [Google Scholar]
  4. Archibald A. R., Baddiley J., Shaukat G. A. The glycerol teichoic acid from walls of Staphylococcus epidermidis I2. Biochem J. 1968 Dec;110(3):583–588. doi: 10.1042/bj1100583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BUBLITZ C., KENNEDY E. P. Synthesis of phosphatides in isolated mitochondria. III. The enzymatic phosphorylation of glycerol. J Biol Chem. 1954 Dec;211(2):951–961. [PubMed] [Google Scholar]
  6. BURGER M. M., GLASER L. THE SYNTHESIS OF TEICHOIC ACIDS. I. POLYGLYCEROPHOSPHATE. J Biol Chem. 1964 Oct;239:3168–3177. [PubMed] [Google Scholar]
  7. Baddiley J., Blumsom N. L., Douglas L. J. The biosynthesis of the wall teichoic acid in Staphylococcus lactis I3. Biochem J. 1968 Dec;110(3):565–571. doi: 10.1042/bj1100565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brooks D., Baddiley J. The mechanism of biosynthesis and direction of chain extension of a poly-(N-acetylglucosamine 1-phosphate) from the walls of Staphylococcus lactis N.C.T.C. 2102. Biochem J. 1969 Jul;113(4):635–642. doi: 10.1042/bj1130635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burger M. M., Glaser L. The synthesis of teichoic acids. V. Polyglucosylglycerol phosphate and polygalactosylglycerol phosphate. J Biol Chem. 1966 Jan 25;241(2):494–506. [PubMed] [Google Scholar]
  10. Ellwood D. C., Kelemen M. V., Baddiley J. The glycerol teichoic acid from the walls of Staphylococcus albus N.T.C.C. 7944. Biochem J. 1963 Feb;86(2):213–225. doi: 10.1042/bj0860213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forrester I. T., Wicken A. J. The chemical composition of the cell walls of some thermophilic bacilli. J Gen Microbiol. 1966 Jan;42(1):147–154. doi: 10.1099/00221287-42-1-147. [DOI] [PubMed] [Google Scholar]
  12. GHUYSEN J. M., TIPPER D. J., STROMINGER J. L. STRUCTURE OF THE CELL WALL OF STAPHYLOCOCCUS AUREUS, STRAIN COPENHAGEN. IV. THE TEICHOIC ACID-GLYCOPEPTIDE COMPLEX. Biochemistry. 1965 Mar;4:474–485. doi: 10.1021/bi00879a016. [DOI] [PubMed] [Google Scholar]
  13. GLASER L., BURGER M. M. THE SYNTHESIS OF TEICHOIC ACIDS. 3. GLUCOSYLATION OF POLYGLYCEROPHOSPHATE. J Biol Chem. 1964 Oct;239:3187–3191. [PubMed] [Google Scholar]
  14. GLASER L. THE SYNTHESIS OF TEICHOIC ACID. IV. ON THE REGULATION OF CYTIDINE 5'-DIPHOSPHATEGLYCEROL CONCENTRATION. Biochim Biophys Acta. 1965 Mar 1;101:6–15. doi: 10.1016/0926-6534(65)90025-4. [DOI] [PubMed] [Google Scholar]
  15. GLASER L. THE SYNTHESIS OF TEICHOIC ACIDS. II. POLYRIBITOL PHOSPHATE. J Biol Chem. 1964 Oct;239:3178–3186. [PubMed] [Google Scholar]
  16. Hussey H., Brooks D., Baddiley J. Direction of chain extension during the biosynthesis of teichoic acids in bacterial cell walls. Nature. 1969 Feb 15;221(5181):665–666. doi: 10.1038/221665a0. [DOI] [PubMed] [Google Scholar]
  17. Ishimoto N., Strominger J. L. Polyribitol phosphate synthetase of Staphylococcus aureus. J Biol Chem. 1966 Feb 10;241(3):639–650. [PubMed] [Google Scholar]
  18. KELEMEN M. V., BADDILEY J. Structure of the intracellular glycerol teichoic acid from Lactobacillus casei A.T.C.C. 7469. Biochem J. 1961 Aug;80:246–254. doi: 10.1042/bj0800246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lipmann F. The relation between the direction and mechanism of polymerization. Essays Biochem. 1968;4:1–23. [PubMed] [Google Scholar]
  21. RUNECKLES V. C., KROTKOV G. The separation of phosphate esters and other metabolites by ionophoresis and chromatography on paper. Arch Biochem Biophys. 1957 Aug;70(2):442–453. doi: 10.1016/0003-9861(57)90132-7. [DOI] [PubMed] [Google Scholar]
  22. Robbins P. W., Bray D., Dankert B. M., Wright A. Direction of chain growth in polysaccharide synthesis. Science. 1967 Dec 22;158(3808):1536–1542. doi: 10.1126/science.158.3808.1536. [DOI] [PubMed] [Google Scholar]
  23. SHAW D. R. Pyrophosphorolysis and enzymic synthesis of cytidine diphosphate glycerol and cytidine diphosphate ribitol. Biochem J. 1962 Feb;82:297–312. doi: 10.1042/bj0820297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shaw N., Baddiley J. The teichoic acid from the walls of Lactobacillus buchneri N.C.I.B. 8007. Biochem J. 1964 Nov;93(2):317–321. doi: 10.1042/bj0930317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wicken A. J. The glycerol teichoic acid from the cell wall of Bacillus stearothermophilus B65. Biochem J. 1966 Apr;99(1):108–116. doi: 10.1042/bj0990108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zaretskaia M. Sh, Naumova I. B., Shabarova Z. A. K voprosu o strukture glitserinteikhoevoi kisloty kletochnoi stenki Actinomyces antibioticus-39. Biokhimiia. 1967 Jul-Aug;32(4):796–802. [PubMed] [Google Scholar]
  27. Zaretskaia M. Sh, Naumova I. B., Shabarova Z. A. Struktura teikhoevoi kisloty iz kletochnoi stenki Actinomyces antibioticus, shtamm 39. Biokhimiia. 1971 Jan-Feb;36(1):97–107. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES