Abstract
1. Procedures are described for the isolation of seven distinct cyanogen bromide fragments in high yield from human serum transferrin. 2. Cyanogen bromide-cleaved transferrin is separated into three fragments (CN-A, CN-B and CN-C) by gel filtration with Sephadex G-100. 3. Four peptides are obtained from CN-A (the largest fragment) after reduction and carboxamidomethylation, by gel filtration in acidic solvents. Two peptides are similarly obtained from fragment CN-B, whereas fragment CN-C is a single cystine-free peptide. 4. The molecular weights of the seven peptides, as determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, by sedimentation-equilibrium ultracentrifugation and by sequence studies, range from 3100 to 27000. Together they account for a molecular weight of 76200 for transferrin. 5. The two largest fragments contain the carbohydrate attachment sites of the protein, and the smallest fragment is derived from the N-terminus. 6. The amino acid compositions and N-terminal groups of the fragments are reported and the results compared with those of previous investigations.
Full text
PDF![163](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/1166263/e2d902fe9bbe/biochemj00585-0176.png)
![164](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/1166263/219ccd0013b3/biochemj00585-0177.png)
![165](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/1166263/2682688f5057/biochemj00585-0178.png)
![166](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/1166263/259073b26ec6/biochemj00585-0179.png)
![167](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/1166263/d27b71452243/biochemj00585-0180.png)
![168](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/1166263/84df754c4c02/biochemj00585-0181.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bezkorovainy A., Grohlich D. Cyanogen bromid fragments of human serum transferrin. Biochim Biophys Acta. 1973 Jun 15;310(2):365–375. doi: 10.1016/0005-2795(73)90118-9. [DOI] [PubMed] [Google Scholar]
- Bezkorovainy A., Grohlich D., Gerbeck C. M. Some physical-chemical properties of reduced-alkylated and sulphitolysed human serum transferrins and hen's-egg conalbumin. Biochem J. 1968 Dec;110(4):765–770. doi: 10.1042/bj1100765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brew K. The complete amino-acid sequence of guinea-pig -lactalbumin. Eur J Biochem. 1972 May 23;27(2):341–353. doi: 10.1111/j.1432-1033.1972.tb01844.x. [DOI] [PubMed] [Google Scholar]
- ERIKSSON S., SJOQUIST J. Quantitative determination of N-terminal amino acids in some serum proteins. Biochim Biophys Acta. 1960 Dec 4;45:290–296. doi: 10.1016/0006-3002(60)91453-0. [DOI] [PubMed] [Google Scholar]
- Findlay J. B., Brew K. The complete amino-acid sequence of human -lactalbumin. Eur J Biochem. 1972 May;27(1):65–86. doi: 10.1111/j.1432-1033.1972.tb01812.x. [DOI] [PubMed] [Google Scholar]
- Greene F. C., Feeney R. E. Physical evidence for transferrins as single polypeptide chains. Biochemistry. 1968 Apr;7(4):1366–1371. doi: 10.1021/bi00844a018. [DOI] [PubMed] [Google Scholar]
- JAMIESON G. A. STUDIES ON GLYCOPROTEINS. II. ISOLATION OF THE CARBOHYDRATE CHAINS OF HUMAN TRANSFERRIN. J Biol Chem. 1965 Jul;240:2914–2920. [PubMed] [Google Scholar]
- Jeppsson J. O. Structural studies of fragments resulting from cyanogen bromide degradation of human transferrin. Biochim Biophys Acta. 1967 Aug 15;140(3):477–486. doi: 10.1016/0005-2795(67)90520-x. [DOI] [PubMed] [Google Scholar]
- LaBar F. E. A procedure for molecular weight measurements: application to Chymotrypsinogen A. Proc Natl Acad Sci U S A. 1965 Jul;54(1):31–36. doi: 10.1073/pnas.54.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann K. G., Fish W. W., Cox A. C., Tanford C. Single-chain nature of human serum transferrin. Biochemistry. 1970 Mar 17;9(6):1348–1354. doi: 10.1021/bi00808a008. [DOI] [PubMed] [Google Scholar]
- Palmour R. M., Sutton H. E. Vertebrae transferrins. Molecular weights, chemical compositions, and iron-binding studies. Biochemistry. 1971 Oct 26;10(22):4026–4032. doi: 10.1021/bi00798a003. [DOI] [PubMed] [Google Scholar]
- ULMER D. D., VALLEE B. L. OPTICALLY ACTIVE METALLOPROTEIN CHROMOPHORES. III. HEME AND NONHEME IRON PROTEINS. Biochemistry. 1963 Nov-Dec;2:1335–1340. doi: 10.1021/bi00906a027. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Woodworth R. C., Morallee K. G., Williams R. J. Perturbations of the proton magnetic resonance spectra of conalbumin and siderophilin as a result of binding Ga3+ or Fe3+. Biochemistry. 1970 Feb 17;9(4):839–842. doi: 10.1021/bi00806a017. [DOI] [PubMed] [Google Scholar]
- Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]