Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1986 May;5(5):1105–1109. doi: 10.1002/j.1460-2075.1986.tb04329.x

Enzymatic 2'-O-methylation of the wobble nucleoside of eukaryotic tRNAPhe: specificity depends on structural elements outside the anticodon loop.

L Droogmans, E Haumont, S de Henau, H Grosjean
PMCID: PMC1166908  PMID: 3522221

Abstract

We have investigated the specificity of the enzyme tRNA (wobble guanosine 2'-O-)methyltransferase which catalyses the maturation of guanosine-34 of eukaryotic tRNAPhe to the 2'-O-methyl derivative Gm-34. This study was done by micro-injection into Xenopus laevis oocytes of restructured yeast tRNAPhe in which the anticodon GmAA and the 3' adjacent nucleotide 'Y' were substituted by various tetranucleotides. The results indicate that the enzyme is cytoplasmic; the chemical nature of the bases of the anticodon and its 3' adjacent nucleotide is not critical for the methylation of G-34; the size of the anticodon loop is however important; structural features beyond the anticodon loop are involved in the specific recognition of the tRNA by the enzyme since Escherichia coli tRNAPhe and four chimeric yeast tRNAs carrying the GAA anticodon are not substrates; unexpectedly, the 2'-O-methylation is not restricted to G-34 since C-34, U-34 and A-34 in restructured yeast tRNAPhe also became methylated. It seems probable that the tRNA (wobble guanosine 2'-O-)methyltransferase is not specific for the type of nucleotide-34 in eukaryotic tRNAPhe; however the existence in the oocyte of several methylation enzymes specific for each nucleotide-34 has not yet been ruled out.

Full text

PDF
1105

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  2. Bruce A. G., Uhlenbeck O. C. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1982 Mar 2;21(5):855–861. doi: 10.1021/bi00534a007. [DOI] [PubMed] [Google Scholar]
  3. Carbon P., Haumont E., De Henau S., Keith G., Grosjean H. Enzymatic replacement in vitro of the first anticodon base of yeast tRNAAsp: application to the study of tRNA maturation in vivo, after microinjection into frog oocytes. Nucleic Acids Res. 1982 Jun 25;10(12):3715–3732. doi: 10.1093/nar/10.12.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carbon P., Haumont E., Fournier M., de Henau S., Grosjean H. Site-directed in vitro replacement of nucleosides in the anticodon loop of tRNA: application to the study of structural requirements for queuine insertase activity. EMBO J. 1983;2(7):1093–1097. doi: 10.1002/j.1460-2075.1983.tb01551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fournier M., Haumont E., de Henau S., Gangloff J., Grosjean H. Post-transcriptional modification of the wobble nucleotide in anticodon-substituted yeast tRNAArgII after microinjection into Xenopus laevis oocytes. Nucleic Acids Res. 1983 Feb 11;11(3):707–718. doi: 10.1093/nar/11.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haumont E., Fournier M., de Henau S., Grosjean H. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence. Nucleic Acids Res. 1984 Mar 26;12(6):2705–2715. doi: 10.1093/nar/12.6.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kimura-Harada F., Saneyoshi M., Nishimura S. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 1971 Apr 2;13(6):335–338. doi: 10.1016/0014-5793(71)80254-5. [DOI] [PubMed] [Google Scholar]
  8. Kuchino Y., Borek E., Grunberger D., Mushinski J. F., Nishimura S. Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Nucleic Acids Res. 1982 Oct 25;10(20):6421–6432. doi: 10.1093/nar/10.20.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kumagai I., Watanabe K., Oshima T. A thermostable tRNA (guanosine-2')-methyltransferase from Thermus thermophilus HB27 and the effect of ribose methylation on the conformational stability of tRNA. J Biol Chem. 1982 Jul 10;257(13):7388–7395. [PubMed] [Google Scholar]
  10. Kumagai I., Watanabe K., Oshima T. Thermally induced biosynthesis of 2'-O-methylguanosine in tRNA from an extreme thermophile, Thermus thermophilus HB27. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1922–1926. doi: 10.1073/pnas.77.4.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matsumoto T., Watanabe K., Ohta T. Recognition mechanism of tRNA with tRNA(guanosine-2')methyltransferase from Thermus thermophilus HB 27. Nucleic Acids Symp Ser. 1984;(15):131–134. [PubMed] [Google Scholar]
  12. Mazabraud A. The nucleotide sequence of phenylalanine tRNA of Xenopus laevis. Biochimie. 1982 Oct;64(10):955–960. doi: 10.1016/s0300-9084(82)80359-3. [DOI] [PubMed] [Google Scholar]
  13. Mohr S. C., Thach R. E. Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J Biol Chem. 1969 Dec 25;244(24):6566–6576. [PubMed] [Google Scholar]
  14. Nishikura K., De Robertis E. M. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol. 1981 Jan 15;145(2):405–420. doi: 10.1016/0022-2836(81)90212-6. [DOI] [PubMed] [Google Scholar]
  15. RajBhandary U. L., Chang S. H. Studies on polynucleotides. LXXXII. Yeast phenylalanine transfer ribonucleic acid: partial digestion with ribonuclease T-1 and derivation of the total primary structure. J Biol Chem. 1968 Feb 10;243(3):598–608. [PubMed] [Google Scholar]
  16. Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  17. Sprinzl M., Moll J., Meissner F., Hartmann T. Compilation of tRNA sequences. Nucleic Acids Res. 1985;13 (Suppl):r1–49. doi: 10.1093/nar/13.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sprinzl M., Wagner T., Lorenz S., Erdmann V. A. Regions of tRNA important for binding to the ribosomal A and P sites. Biochemistry. 1976 Jul 13;15(14):3031–3039. doi: 10.1021/bi00659a015. [DOI] [PubMed] [Google Scholar]
  19. Tobian J. A., Drinkard L., Zasloff M. tRNA nuclear transport: defining the critical regions of human tRNAimet by point mutagenesis. Cell. 1985 Dec;43(2 Pt 1):415–422. doi: 10.1016/0092-8674(85)90171-0. [DOI] [PubMed] [Google Scholar]
  20. Tranquilla T. A., Cortese R., Melton D., Smith J. D. Sequences of four tRNA genes from Caenorhabditis elegans and the expression of C. elegans tRNALeu (anticodon IAG) in Xenopus oocytes. Nucleic Acids Res. 1982 Dec 20;10(24):7919–7934. doi: 10.1093/nar/10.24.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tsang T. H., Buck M., Ames B. N. Sequence specificity of tRNA-modifying enzymes. An analysis of 258 tRNA sequences. Biochim Biophys Acta. 1983 Nov 17;741(2):180–196. doi: 10.1016/0167-4781(83)90058-1. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES