Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1986 Jul;5(7):1735–1742. doi: 10.1002/j.1460-2075.1986.tb04418.x

A chromatin core particle obtained by selective cleavage of histones by clostripain.

A Dumuis-Kervabon, I Encontre, G Etienne, J Jauregui-Adell, J Méry, D Mesnier, J Parello
PMCID: PMC1167001  PMID: 3527696

Abstract

Rat liver chromatin core particles digested with clostripain yield a structurally well-defined nucleoprotein particle with an octameric core made up of fragmented histone species (designated H'2A, H'2B, H'3 and H'4, respectively) after selective loss of a sequence segment located in the N-terminal region of each core histone. Sequential Edman degradation and carboxypeptidase digestion unambiguously establish that histones H2A, H2B, H3 and H4 are selectively cleaved at the carboxyl side of Arg 11, Lys 20, Arg 26 and Arg 19 respectively and that the C-terminal sequences remain unaffected. Despite the loss of the highly basic N-terminal regions, including approximately 17% of the total amino acids, the characteristic structural organization of the nucleosome core particle appears to be fully retained in the proteolyzed core particle, as judged by physicochemical and biochemical evidence. Binding of spermidine to native and proteolyzed core particles shows that DNA accessibility differs markedly in both structures. As expected the proteolyzed particle, which has lost all the in vivo acetylation sites, is not enzymatically acetylated, in contrast to the native particle. However, proteolyzed histones act as substrates of the acetyltransferase in the absence of DNA, as a consequence of the occurrence of potential acetylation sites in the core histones thus rendered accessible. The possible role of the histone N-terminal regions on chromatin structure and function is discussed in the light of the present observations with the new core particle obtained by clostripain proteolysis.

Full text

PDF
1735

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode J., Henco K., Wingender E. Modulation of the nucleosome structure by histone acetylation. Eur J Biochem. 1980 Sep;110(1):143–152. doi: 10.1111/j.1432-1033.1980.tb04849.x. [DOI] [PubMed] [Google Scholar]
  2. Böhm E. L., Strickland W. N., Strickland M., Thwaits B. H., van der Westhuizen D. R., von Holt C. Purification of the five main calf thymus histone fractions by gel exclusion chromatography. FEBS Lett. 1973 Aug 15;34(2):217–221. doi: 10.1016/0014-5793(73)80797-5. [DOI] [PubMed] [Google Scholar]
  3. Böhm L., Crane-Robinson C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep. 1984 May;4(5):365–386. doi: 10.1007/BF01122502. [DOI] [PubMed] [Google Scholar]
  4. Chahal S. S., Matthews H. R., Bradbury E. M. Acetylation of histone H4 and its role in chromatin structure and function. Nature. 1980 Sep 4;287(5777):76–79. doi: 10.1038/287076a0. [DOI] [PubMed] [Google Scholar]
  5. DeLange R. J., Smith E. L., Bonner J. Calf thymus histone 3: sequences of the amino-and carboxyl-terminal regions and of the regions containing lysyl residues modified by acetylation and methylation. Biochem Biophys Res Commun. 1970 Aug 24;40(4):989–993. doi: 10.1016/0006-291x(70)91001-6. [DOI] [PubMed] [Google Scholar]
  6. Desai L., Ogawa Y., Mauritzen C. M., Taylor C. W., Starbuck W. C. Carboxyl-terminal sequence of the glycine-arginine-rich histone from bovine lymphosarcoma, Novikoff hepatoma and fetal calf thymus. Biochim Biophys Acta. 1969 May;181(1):146–153. doi: 10.1016/0005-2795(69)90234-7. [DOI] [PubMed] [Google Scholar]
  7. Dod B., Kervabon A., Parello J. Effect of cations on the acetylation of chromatin in vitro. Eur J Biochem. 1982 Jan;121(2):401–405. doi: 10.1111/j.1432-1033.1982.tb05801.x. [DOI] [PubMed] [Google Scholar]
  8. Dumuis-Kervabon A., Parello J. Une nouvelle particule de chromatine obtenue par protéolyse des histones par la clostripaïne. C R Acad Sci III. 1984;299(7):185–188. [PubMed] [Google Scholar]
  9. Eickbush T. H., Moudrianakis E. N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry. 1978 Nov 14;17(23):4955–4964. doi: 10.1021/bi00616a016. [DOI] [PubMed] [Google Scholar]
  10. Gilles A. M., Imhoff J. M., Keil B. alpha-Clostripain. Chemical characterization, activity, and thiol content of the highly active form of clostripain. J Biol Chem. 1979 Mar 10;254(5):1462–1468. [PubMed] [Google Scholar]
  11. Gorovsky M. A., Carlson K., Rosenbaum J. L. Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem. 1970 Jun;35(2):359–370. doi: 10.1016/0003-2697(70)90196-x. [DOI] [PubMed] [Google Scholar]
  12. Gourévitch M., Puigdoménech P., Cavé A., Etienne G., Méry J., Parello J. Model studies in relation to the molecular structure of chromatin. Biochimie. 1974;56(6-7):967–985. doi: 10.1016/s0300-9084(74)80518-3. [DOI] [PubMed] [Google Scholar]
  13. Hayashi R. Carboxypeptidase Y in sequence determination of peptides. Methods Enzymol. 1977;47:84–93. doi: 10.1016/0076-6879(77)47010-1. [DOI] [PubMed] [Google Scholar]
  14. Igo-Kemenes T., Hörz W., Zachau H. G. Chromatin. Annu Rev Biochem. 1982;51:89–121. doi: 10.1146/annurev.bi.51.070182.000513. [DOI] [PubMed] [Google Scholar]
  15. Kervabon A., Mery J., Parello J. Enzymatic deacetylation of a synthetic peptide fragment of histone H4. FEBS Lett. 1979 Oct 1;106(1):93–96. doi: 10.1016/0014-5793(79)80702-4. [DOI] [PubMed] [Google Scholar]
  16. Kervabon A., Parello J., Mery J. Chemical studies on histone acetylation using a synthetic peptide fragment of histone H4. FEBS Lett. 1979 Feb 1;98(1):152–156. doi: 10.1016/0014-5793(79)80172-6. [DOI] [PubMed] [Google Scholar]
  17. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  18. Kornberg R. D., Thomas J. O. Chromatin structure; oligomers of the histones. Science. 1974 May 24;184(4139):865–868. doi: 10.1126/science.184.4139.865. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Laine B., Sautière P., Biserte G. Primary structure and microheterogeneities of rat chloroleukemia histone H2A (histone ALK, IIbl or F2a2). Biochemistry. 1976 Apr 20;15(8):1640–1645. doi: 10.1021/bi00653a008. [DOI] [PubMed] [Google Scholar]
  21. Libertini L. J., Small E. W. Effects of pH on the stability of chromatin core particles. Nucleic Acids Res. 1984 May 25;12(10):4351–4359. doi: 10.1093/nar/12.10.4351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lilley D. M., Tatchell K. Chromatin core particle unfolding induced by tryptic cleavage of histones. Nucleic Acids Res. 1977 Jun;4(6):2039–2055. doi: 10.1093/nar/4.6.2039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maniatis T., Jeffrey A., van deSande H. Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry. 1975 Aug 26;14(17):3787–3794. doi: 10.1021/bi00688a010. [DOI] [PubMed] [Google Scholar]
  24. Martinage A., Mangeat P., Sautière P., Marchis-Mouren G., Biserte G. Amino acid sequence of rat thymus histone H2B and identification of the in vitro phosphorylation sites. Biochimie. 1979;61(1):61–69. doi: 10.1016/s0300-9084(79)80313-2. [DOI] [PubMed] [Google Scholar]
  25. Mathis D. J., Oudet P., Wasylyk B., Chambon P. Effect of histone acetylation on structure and in vitro transcription of chromatin. Nucleic Acids Res. 1978 Oct;5(10):3523–3547. doi: 10.1093/nar/5.10.3523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McGhee J. D., Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115–1156. doi: 10.1146/annurev.bi.49.070180.005343. [DOI] [PubMed] [Google Scholar]
  27. Muller S., Himmelspach K., Van Regenmortel M. H. Immunochemical localization of the C-terminal hexapeptide of histone H3 at the surface of chromatin subunits. EMBO J. 1982;1(4):421–425. doi: 10.1002/j.1460-2075.1982.tb01185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Panyim S., Chalkley R. The heterogeneity of histones. I. A quantitative analysis of calf histones in very long polyacrylamide gels. Biochemistry. 1969 Oct;8(10):3972–3979. doi: 10.1021/bi00838a013. [DOI] [PubMed] [Google Scholar]
  29. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  30. Simpson R. T., Whitlock J. P. Mapping DNAase l-susceptible sites in nucleosomes labeled at the 5' ends. Cell. 1976 Oct;9(2):347–353. doi: 10.1016/0092-8674(76)90124-0. [DOI] [PubMed] [Google Scholar]
  31. Whitlock J. P., Jr, Simpson R. T. Localization of the sites along nucleosome DNA which interact with NH2-terminal histone regions. J Biol Chem. 1977 Sep 25;252(18):6516–6520. [PubMed] [Google Scholar]
  32. van der Westhuyzen D. R., von Holt C. A new procedure for the isolation and fractionation of histones. FEBS Lett. 1971 May 20;14(5):333–337. doi: 10.1016/0014-5793(71)80294-6. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES