Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1995 Jun;186(Pt 3):469–481.

Colour thresholding in video imaging.

C D Fermin 1, S Degraw 1
PMCID: PMC1167006  PMID: 7559121

Abstract

The basic aspects of video imaging are reviewed as they relate to measurements of histological and anatomical features, with particular emphasis on the advantages and disadvantages of colour and black-and-white imaging modes. In black-and-white imaging, calculations are based on the manipulation of picture elements (pixels) that contain 0-255 levels of information. Black is represented by the absence of light (0) and white by 255 grades of light. In colour imaging, the pixels contain variation of hues for the primary (red, green and blue) and secondary (magenta, yellow, cyan, pink) colours. Manipulation of pixels with colour information is more computer intense than that for black-and-white pixels, because there are over 16 million possible combinations of colour in a system with a 24-bit resolution. The narrow 128 possible grades of separation in black and white often makes distinction between pixels with overlapping intensities difficult. Such difficulty is greatly reduced by colour thresholding of systems that base the representation of colour on a combination of hue-saturation-intensity (HSI) format.

Full text

PDF
469

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dewald G. W., Schad C. R., Christensen E. R., Tiede A. L., Zinsmeister A. R., Spurbeck J. L., Thibodeau S. N., Jalal S. M. The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genet Cytogenet. 1993 Nov;71(1):7–14. doi: 10.1016/0165-4608(93)90196-s. [DOI] [PubMed] [Google Scholar]
  2. Fermin C. D., Gerber M. A., Torre-Bueno J. R. Colour thresholding and objective quantification in bioimaging. J Microsc. 1992 Jul;167(Pt 1):85–95. doi: 10.1111/j.1365-2818.1992.tb03221.x. [DOI] [PubMed] [Google Scholar]
  3. Fermin C. D., Igarashi M. Morphometry and ultrastructure of the squirrel monkey (Saimiri sciureus) vestibular nerve. Acta Anat (Basel) 1987;129(3):188–199. doi: 10.1159/000146398. [DOI] [PubMed] [Google Scholar]
  4. Fermin C. D., Lee D. H., Martin D. Post-embedding tem signal-to-noise ratio of S-100. Hear Res. 1994 Mar;73(2):195–202. doi: 10.1016/0378-5955(94)90235-6. [DOI] [PubMed] [Google Scholar]
  5. Haar F. M., Durm M., Aldinger K., Celeda D., Hausmann M., Ludwig H., Cremer C. A rapid FISH technique for quantitative microscopy. Biotechniques. 1994 Aug;17(2):346-8, 350-3. [PubMed] [Google Scholar]
  6. Kuo M. T., Vyas R. C., Jiang L. X., Hittelman W. N. Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells. Mol Cell Biol. 1994 Aug;14(8):5202–5211. doi: 10.1128/mcb.14.8.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lanièce P., Charon Y., Dumas S., Mastrippolito R., Pinot L., Tricoire H., Valentin L. HRRI: a high resolution radioimager for fast, direct quantification in in situ hybridization experiments. Biotechniques. 1994 Aug;17(2):338–345. [PubMed] [Google Scholar]
  8. Linder J. Overview of digital imaging in pathology. The fifth wave. Am J Clin Pathol. 1990 Oct;94(4 Suppl 1):S30–S34. [PubMed] [Google Scholar]
  9. Nawfel R. D., Chan K. H., Wagenaar D. J., Judy P. F. Evaluation of video gray-scale display. Med Phys. 1992 May-Jun;19(3):561–567. doi: 10.1118/1.596846. [DOI] [PubMed] [Google Scholar]
  10. Nederlof P. M., van der Flier S., Raap A. K., Tanke H. J. Quantification of inter- and intra-nuclear variation of fluorescence in situ hybridization signals. Cytometry. 1992;13(8):831–838. doi: 10.1002/cyto.990130805. [DOI] [PubMed] [Google Scholar]
  11. Nederlof P. M., van der Flier S., Verwoerd N. P., Vrolijk J., Raap A. K., Tanke H. J. Quantification of fluorescence in situ hybridization signals by image cytometry. Cytometry. 1992;13(8):846–852. doi: 10.1002/cyto.990130807. [DOI] [PubMed] [Google Scholar]
  12. Shoobridge M. P. A new principle in polychrome staining: a system of automated staining, complementary to hematoxylin and eosin, and usable as a research tool. Stain Technol. 1983 Sep;58(5):245–258. doi: 10.3109/10520298309066797. [DOI] [PubMed] [Google Scholar]
  13. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
  14. Wells W. A., Rainer R. O., Memoli V. A. Basic principles of image processing. Am J Clin Pathol. 1992 Nov;98(5):493–501. doi: 10.1093/ajcp/98.5.493. [DOI] [PubMed] [Google Scholar]
  15. Wells W. A., Rainer R. O., Memoli V. A. Equipment, standardization, and applications of image processing. Am J Clin Pathol. 1993 Jan;99(1):48–56. doi: 10.1093/ajcp/99.1.48. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES