Abstract
The possible origins of cerebellar cholinergic afferents from the lower brainstem of the gerbil were examined using immunohistochemistry combined with retrograde neuronal labelling techniques. Choline acetyltransferase (ChAT) monoclonal antibody was used in conjunction with a retrogradely transported tracer, horseradish peroxidase (HRP). The use of this technique allowed an unequivocal localisation of cholinergic neurons in different parts of the lower brainstem projecting to the cerebellum. In addition, single labelling of acetylcholinesterase (AChE), ChAT and HRP was carried out to elucidate the efferent projection from the lower brainstem to the cerebellum as well as the cholinergic distribution in these two areas. Our results showed the presence of HRP/ChAT double-labelled neurons in (1) the midline medulla: the periventricular gray beneath the 4th ventricle, C3 adrenergic area, raphe obscurus nucleus and medial longitudinal fasciculus, (2) the reticular formation: the medullary, lateral, intermediate, gigantocellular, lateral paragigantocellular and dorsal paragigantocellular reticular nuclei and gigantocellular reticular nucleus ventralis, and (3) sensory nuclei: the gracile nucleus, cuneate nucleus, external cuneate nucleus, spinal trigeminal nucleus interpolaris, prepositus hypoglossal nucleus and medial vestibular nucleus. In the cerebellum, AChE-positive mossy fibres were chiefly localised in the vermian lobules VIb,c, VII and X, paramedian lobule, crura I and II, paraflocculus and flocculus, and they were distributed in the white matter and granular layer of the cortex. The 3 above-mentioned cerebellar cholinergic afferent systems associated with the unique AChE distribution pattern in the cerebellum may be of important functional significance.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barmack N. H., Baughman R. W., Eckenstein F. P. Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol. 1992 Mar 15;317(3):233–249. doi: 10.1002/cne.903170303. [DOI] [PubMed] [Google Scholar]
- Barmack N. H., Baughman R. W., Eckenstein F. P., Shojaku H. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol. 1992 Mar 15;317(3):250–270. doi: 10.1002/cne.903170304. [DOI] [PubMed] [Google Scholar]
- Bishop G. A., Ho R. H. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 1985 Apr 8;331(2):195–207. doi: 10.1016/0006-8993(85)91545-8. [DOI] [PubMed] [Google Scholar]
- Blanks R. H., Precht W., Torigoe Y. Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res. 1983;52(2):293–306. doi: 10.1007/BF00236639. [DOI] [PubMed] [Google Scholar]
- Boegman R. J., Parent A., Hawkes R. Zonation in the rat cerebellar cortex: patches of high acetylcholinesterase activity in the granular layer are congruent with Purkinje cell compartments. Brain Res. 1988 May 17;448(2):237–251. doi: 10.1016/0006-8993(88)91261-9. [DOI] [PubMed] [Google Scholar]
- Bowker R. M., Steinbusch H. W., Coulter J. D. Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Res. 1981 May 4;211(2):412–417. doi: 10.1016/0006-8993(81)90965-3. [DOI] [PubMed] [Google Scholar]
- Carvalheira A. F., Pearse A. G. Comparative cytochemistry of C cell esterases in the mammalian thyroid-parathyroid complex. Histochemie. 1967;8(2):175–182. doi: 10.1007/BF00306470. [DOI] [PubMed] [Google Scholar]
- Dietrichs E., Walberg F. Cerebellar nuclear afferents--where do they originate? A re-evaluation of the projections from some lower brain stem nuclei. Anat Embryol (Berl) 1987;177(2):165–172. doi: 10.1007/BF00572541. [DOI] [PubMed] [Google Scholar]
- Eckenstein F., Sofroniew M. V. Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J Neurosci. 1983 Nov;3(11):2286–2291. doi: 10.1523/JNEUROSCI.03-11-02286.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonnum F. Application of microchemical analysis and subcellular fractionation techniques to the study of neurotransmitters in discrete areas of mammalian brain. Adv Biochem Psychopharmacol. 1972;6:75–88. [PubMed] [Google Scholar]
- Godaux E., Cheron G. The role of the vestibular commissure in the gaze holding of the cat. Neurosci Lett. 1993 Apr 30;153(2):149–152. doi: 10.1016/0304-3940(93)90309-9. [DOI] [PubMed] [Google Scholar]
- Gresty M., Baker R. Neurons with visual receptive field, eye movement and neck displacement sensitivity within and around the nucleus prepositus hypoglossi in the alert cat. Exp Brain Res. 1976 Feb 26;24(4):429–433. doi: 10.1007/BF00235008. [DOI] [PubMed] [Google Scholar]
- Henderson Z., Sherriff F. E. Distribution of choline acetyltransferase immunoreactive axons and terminals in the rat and ferret brainstem. J Comp Neurol. 1991 Dec 1;314(1):147–163. doi: 10.1002/cne.903140114. [DOI] [PubMed] [Google Scholar]
- Henry R. T., Connor J. D., Balaban C. D. Nodulus-uvula depressor response: central GABA-mediated inhibition of alpha-adrenergic outflow. Am J Physiol. 1989 Jun;256(6 Pt 2):H1601–H1608. doi: 10.1152/ajpheart.1989.256.6.H1601. [DOI] [PubMed] [Google Scholar]
- Howe P. R., Costa M., Furness J. B., Chalmers J. P. Simultaneous demonstration of phenylethanolamine N-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience. 1980;5(12):2229–2238. doi: 10.1016/0306-4522(80)90139-6. [DOI] [PubMed] [Google Scholar]
- Ikeda M., Houtani T., Ueyama T., Sugimoto T. Distribution and cerebellar projections of cholinergic and corticotropin-releasing factor-containing neurons in the caudal vestibular nuclear complex and adjacent brainstem structures. Neuroscience. 1992 Aug;49(3):635–651. doi: 10.1016/0306-4522(92)90233-r. [DOI] [PubMed] [Google Scholar]
- Israël M., Whittaker V. P. The isolation of mossy fibre endings from the granular layer of the cerebellar cortex. Experientia. 1965 Jun 15;21(6):325–326. doi: 10.1007/BF02144693. [DOI] [PubMed] [Google Scholar]
- Jones B. E., Beaudet A. Distribution of acetylcholine and catecholamine neurons in the cat brainstem: a choline acetyltransferase and tyrosine hydroxylase immunohistochemical study. J Comp Neurol. 1987 Jul 1;261(1):15–32. doi: 10.1002/cne.902610103. [DOI] [PubMed] [Google Scholar]
- Kan K. S., Chao L. P., Eng L. F. Immunohistochemical localization of choline acetyltransferase in rabbit spinal cord and cerebellum. Brain Res. 1978 May 12;146(2):221–229. doi: 10.1016/0006-8993(78)90970-8. [DOI] [PubMed] [Google Scholar]
- Kan K. S., Chao L. P., Forno L. S. Immunohistochemical localization of choline acetyltransferase in the human cerebellum. Brain Res. 1980 Jul 7;193(1):165–171. doi: 10.1016/0006-8993(80)90953-1. [DOI] [PubMed] [Google Scholar]
- Kase M., Miller D. C., Noda H. Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol. 1980 Mar;300:539–555. doi: 10.1113/jphysiol.1980.sp013178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimoto Y., Satoh K., Sakumoto T., Tohyama M., Shimizu N. Afferent fiber connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining, with special reference to noradrenergic neurons. J Hirnforsch. 1978;19(1):85–100. [PubMed] [Google Scholar]
- Kimura H., McGeer P. L., Peng J. H., McGeer E. G. The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J Comp Neurol. 1981 Aug 1;200(2):151–201. doi: 10.1002/cne.902000202. [DOI] [PubMed] [Google Scholar]
- Kotchabhakdi N., Hoddevik G. H., Walberg F. The reticulocerebellar projection in the cat as studied with retrograde transport of horseradish peroxidase. Anat Embryol (Berl) 1980;160(3):341–359. doi: 10.1007/BF00305113. [DOI] [PubMed] [Google Scholar]
- Kotchabhakdi N., Walberg F. Cerebeller afferents from neurons in motor nuclei of cranial nerves demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res. 1977 Nov 25;137(1):158–163. doi: 10.1016/0006-8993(77)91020-4. [DOI] [PubMed] [Google Scholar]
- Kása P., Silver A. The correlation between choline acetyltransferase and acetylcholinesterase activity in different areas of the cerebellum of rat and guinea pig. J Neurochem. 1969 Mar;16(3):386–396. doi: 10.1111/j.1471-4159.1969.tb10379.x. [DOI] [PubMed] [Google Scholar]
- Kása P. The cholinergic systems in brain and spinal cord. Prog Neurobiol. 1986;26(3):211–272. doi: 10.1016/0301-0082(86)90016-x. [DOI] [PubMed] [Google Scholar]
- Lan C. T., Wen C. Y., Shieh J. Y. Anatomical studies on the cuneocerebellar neurons in the gerbil by using HRP method. Ann Anat. 1994 Oct;176(5):409–418. doi: 10.1016/s0940-9602(11)80467-x. [DOI] [PubMed] [Google Scholar]
- Lan C. T., Wen C. Y., Shieh J. Y. Musculotopic organization of muscle afferents in the external cuneate nucleus of the gerbil as revealed by transganglionic transport of horseradish peroxidase. Acta Anat (Basel) 1994;149(2):134–140. doi: 10.1159/000147568. [DOI] [PubMed] [Google Scholar]
- Langer T., Fuchs A. F., Scudder C. A., Chubb M. C. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 1985 May 1;235(1):1–25. doi: 10.1002/cne.902350102. [DOI] [PubMed] [Google Scholar]
- Lewis P. R., Shute C. C. An electron-microscopic study of cholinesterase distribution in the rat adrenal medulla. J Microsc. 1969;89(2):181–193. doi: 10.1111/j.1365-2818.1969.tb00664.x. [DOI] [PubMed] [Google Scholar]
- Lisberger S. G., Fuchs A. F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J Neurophysiol. 1978 May;41(3):764–777. doi: 10.1152/jn.1978.41.3.764. [DOI] [PubMed] [Google Scholar]
- Lutherer L. O., Williams J. L., Everse S. J. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J Auton Nerv Syst. 1989 Jul;27(2):101–111. doi: 10.1016/0165-1838(89)90092-1. [DOI] [PubMed] [Google Scholar]
- Marani E., Voogd J. An acetylcholinesterase band-pattern in the molecular layer of the cat cerebellum. J Anat. 1977 Nov;124(Pt 2):335–345. [PMC free article] [PubMed] [Google Scholar]
- Menétrey D., Leah J., de Pommery J. Efferent projections of the paratrigeminal nucleus in the rat. Neurosci Lett. 1987 Jan 2;73(1):48–52. doi: 10.1016/0304-3940(87)90029-2. [DOI] [PubMed] [Google Scholar]
- Mizukawa K., McGeer P. L., Tago H., Peng J. H., McGeer E. G., Kimura H. The cholinergic system of the human hindbrain studied by choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Brain Res. 1986 Jul 30;379(1):39–55. doi: 10.1016/0006-8993(86)90253-2. [DOI] [PubMed] [Google Scholar]
- Morales E., Tapia R. Neurotransmitters of the cerebellar glomeruli: uptake and release of labeled gamma-aminobutyric acid, glycine, serotonin and choline in a purified glomerulus fraction and in granular layer slices. Brain Res. 1987 Sep 8;420(1):11–21. doi: 10.1016/0006-8993(87)90234-4. [DOI] [PubMed] [Google Scholar]
- Newman D. B., Ginsberg C. Y. Brainstem reticular nuclei that project to the cerebellum in rats: a retrograde tracer study. Brain Behav Evol. 1992;39(1):24–68. doi: 10.1159/000114102. [DOI] [PubMed] [Google Scholar]
- Noda H., Fujikado T. Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol. 1987 Aug;58(2):359–378. doi: 10.1152/jn.1987.58.2.359. [DOI] [PubMed] [Google Scholar]
- Ojima H., Kawajiri S., Yamasaki T. Cholinergic innervation of the rat cerebellum: qualitative and quantitative analyses of elements immunoreactive to a monoclonal antibody against choline acetyltransferase. J Comp Neurol. 1989 Dec 1;290(1):41–52. doi: 10.1002/cne.902900104. [DOI] [PubMed] [Google Scholar]
- Palkovits M., Jacobowitz D. M. Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol. 1974 Sep 1;157(1):29–42. doi: 10.1002/cne.901570104. [DOI] [PubMed] [Google Scholar]
- Phillis J. W. Acetylcholinesterase in the feline cerebellum. J Neurochem. 1968 Jul;15(7):691–698. doi: 10.1111/j.1471-4159.1968.tb08969.x. [DOI] [PubMed] [Google Scholar]
- Pällysaho J., Sugita S., Noda H. Brainstem mossy fiber projections to lobules VIa, VIb,c, VII and VIII of the cerebellar vermis in the rat. Neurosci Res. 1991 Oct;12(1):217–231. doi: 10.1016/0168-0102(91)90112-c. [DOI] [PubMed] [Google Scholar]
- Robertson L. T., Logan K. Relationship of parasagittal bands of acetylcholinesterase activity to the climbing fiber representation. Neurosci Lett. 1986 Dec 12;72(2):128–134. doi: 10.1016/0304-3940(86)90067-4. [DOI] [PubMed] [Google Scholar]
- Robertson L. T., Roman N. Distribution of acetylcholinesterase in the granular layer of the cerebellum of the rhesus monkey (Macaca mulatta). Brain Behav Evol. 1989;34(6):342–350. doi: 10.1159/000116520. [DOI] [PubMed] [Google Scholar]
- Ruggiero D. A., Giuliano R., Anwar M., Stornetta R., Reis D. J. Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol. 1990 Feb 1;292(1):1–53. doi: 10.1002/cne.902920102. [DOI] [PubMed] [Google Scholar]
- SHUTE C. C., LEWIS P. R. CHOLINESTERASE-CONTAINING PATHWAYS OF THE HINDBRAIN: AFFERENT CEREBELLAR AND CENTRIFUGAL COCHLEAR FIBRES. Nature. 1965 Jan 16;205:242–246. doi: 10.1038/205242a0. [DOI] [PubMed] [Google Scholar]
- Satoh K., Armstrong D. M., Fibiger H. C. A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res Bull. 1983 Dec;11(6):693–720. doi: 10.1016/0361-9230(83)90013-8. [DOI] [PubMed] [Google Scholar]
- Somana R., Walberg F. Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett. 1979 Jan;11(1):41–47. doi: 10.1016/0304-3940(79)90053-3. [DOI] [PubMed] [Google Scholar]
- Somana R., Walberg F. The cerebellar projection from the paratrigeminal nucleus in the cat. Neurosci Lett. 1979 Nov;15(1):49–54. doi: 10.1016/0304-3940(79)91528-3. [DOI] [PubMed] [Google Scholar]
- Tago H., McGeer P. L., McGeer E. G., Akiyama H., Hersh L. B. Distribution of choline acetyltransferase immunopositive structures in the rat brainstem. Brain Res. 1989 Aug 28;495(2):271–297. doi: 10.1016/0006-8993(89)90221-7. [DOI] [PubMed] [Google Scholar]
- Tan H., Gerrits N. M. Laterality in the vestibulo-cerebellar mossy fiber projection to flocculus and caudal vermis in the rabbit: a retrograde fluorescent double-labeling study. Neuroscience. 1992;47(4):909–919. doi: 10.1016/0306-4522(92)90039-5. [DOI] [PubMed] [Google Scholar]
- Terrian D. M., Noisin E. L., Thomas W. E. Choline uptake by glomerular synapses isolated from bovine cerebellar vermis. Brain Res. 1986 Feb 26;366(1-2):401–404. doi: 10.1016/0006-8993(86)91328-4. [DOI] [PubMed] [Google Scholar]
- Vincent S. R., Reiner P. B. The immunohistochemical localization of choline acetyltransferase in the cat brain. Brain Res Bull. 1987 Mar;18(3):371–415. doi: 10.1016/0361-9230(87)90015-3. [DOI] [PubMed] [Google Scholar]
- Waespe W., Büttner U., Henn V. Visual-vestibular interaction in the flocculus of the alert monkey. I. Input activity. Exp Brain Res. 1981;43(3-4):337–348. doi: 10.1007/BF00238376. [DOI] [PubMed] [Google Scholar]
- Zheng Z. H., Dietrichs E., Walberg F. Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat. Neurosci Lett. 1982 Oct 8;32(2):113–118. doi: 10.1016/0304-3940(82)90259-2. [DOI] [PubMed] [Google Scholar]










