Abstract
The rat pancreas has frequently been used as an animal model to study changes in islet cells in pathological conditions, such as diabetes mellitus and islet cell tumours, but detailed quantitative data on the islets are not available. This study was therefore undertaken to investigate (1) the volume density of pancreatic islets, (2) islet diameter, islet volume and islet cell number and (3) islet cell pattern, i.e. the distribution, volume and number of each cell type per islet. The study also investigated the possibility of differences in various pancreatic regions derived from the dorsal primordium. The rat pancreas was divided into 4 regions: lower duodenal (derived from the ventral primordium) and upper duodenal, gastric and splenic regions (derived from the dorsal primordium). Sections were stained immunocytochemically with anti-insulin (B cells), antiglucagon (A cells), antisomatostatin (D cells) and antipancreatic polypeptide (PP cells) antibodies, and were used for morphometric analysis. A total of 1292 islets was examined, 328 from the lower duodenal, 245 from the upper duodenal, 314 from the gastric and 405 from the splenic regions. The mean volume density of the islets per pancreatic tissue was found to be 2.6 +/- 0.1%, 2.3 +/- 0.1%, 2.9 +/- 0.2% and 3.3 +/- 0.2%, in the lower duodenal, upper duodenal, gastric and splenic regions, respectively. The size-frequency distribution of the profile diameters of the islets showed an overall shift of all the size classes towards smaller sizes in the upper duodenal region, and towards larger sizes in the splenic region, as compared with the corresponding classes of the other regions.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baetens D., Malaisse-Lagae F., Perrelet A., Orci L. Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science. 1979 Dec 14;206(4424):1323–1325. doi: 10.1126/science.390711. [DOI] [PubMed] [Google Scholar]
- Bani Sacchi T., Bani D. New views on the identification of the various cell types in the pancreatic islets of the rat. An ultrastructural and morphometrical study. Acta Anat (Basel) 1985;122(1):1–17. doi: 10.1159/000145977. [DOI] [PubMed] [Google Scholar]
- Bonner-Weir S., Like A. A. A dual population of islets of Langerhans in bovine pancreas. Cell Tissue Res. 1980;206(1):157–170. doi: 10.1007/BF00233616. [DOI] [PubMed] [Google Scholar]
- Carpenter A. M., Gerritsen G. C., Dulin W. E., Lazarow A. Islet and beta cell volumes in diabetic Chinese hamsters and their non-diabetic siblings. Diabetologia. 1967 Apr;3(2):92–96. doi: 10.1007/BF01222184. [DOI] [PubMed] [Google Scholar]
- Carrillo M., Zanuy S., Duve H., Thorpe A. Identification of hormone-producing cells of the endocrine pancreas of the sea bass, Dicentrarchus labrax, by ultrastructural immunocytochemistry. Gen Comp Endocrinol. 1986 Feb;61(2):287–301. doi: 10.1016/0016-6480(86)90206-6. [DOI] [PubMed] [Google Scholar]
- Erlandsen S. L., Hegre O. D., Parsons J. A., McEvoy R. C., Elde R. P. Pancreatic islet cell hormones distribution of cell types in the islet and evidence for the presence of somatostatin and gastrin within the D cell. J Histochem Cytochem. 1976 Jul;24(7):883–897. doi: 10.1177/24.7.60437. [DOI] [PubMed] [Google Scholar]
- Furuoka H., Ito H., Hamada M., Suwa T., Satoh H., Itakura C. Immunocytochemical component of endocrine cells in pancreatic islets of horses. Nihon Juigaku Zasshi. 1989 Feb;51(1):35–43. doi: 10.1292/jvms1939.51.35. [DOI] [PubMed] [Google Scholar]
- Furuzawa Y., Ohmori Y., Watanabe T. Immunohistochemical morphometry of pancreatic islets in the cat. J Vet Med Sci. 1992 Dec;54(6):1165–1173. doi: 10.1292/jvms.54.1165. [DOI] [PubMed] [Google Scholar]
- Gersell D. J., Gingerich R. L., Greider M. H. Regional distribution and concentration of pancreatic polypeptide in the human and canine pancreas. Diabetes. 1979 Jan;28(1):11–15. [PubMed] [Google Scholar]
- Goldsmith P. C., Rose J. C., Arimura A., Ganong W. F. Ultrastructural localization of somatostatin in pancreatic islets of the rat. Endocrinology. 1975 Oct;97(4):1061–1064. doi: 10.1210/endo-97-4-1061. [DOI] [PubMed] [Google Scholar]
- Helmstaedter V., Feurle G. E., Forssmann W. G. Insulin-, glucagon-, and somatostatin-immunoreactive endocrine cells in the equine pancreas. Cell Tissue Res. 1976 Sep 29;172(4):447–454. doi: 10.1007/BF00220331. [DOI] [PubMed] [Google Scholar]
- Henderson J. R., Daniel P. M., Fraser P. A. The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut. 1981 Feb;22(2):158–167. doi: 10.1136/gut.22.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Ito S., Yamada Y., Hayashi M., Matsubara Y. Somatostatin-containing cells in the rat and horse pancreatic islets. Tohoku J Exp Med. 1978 Jan;124(1):57–64. doi: 10.1620/tjem.124.57. [DOI] [PubMed] [Google Scholar]
- Jones C. W., Reynolds W. A., Hoganson G. E. Streptozotocin diabetes in the monkey: plasma levels of glucose, insulin, glucagon, and somatostatin, with corresponding morphometric analysis of islet endocrine cells. Diabetes. 1980 Jul;29(7):536–546. doi: 10.2337/diab.29.7.536. [DOI] [PubMed] [Google Scholar]
- Jörns A., Barklage E., Grube D. Heterogeneities of the islets in the rabbit pancreas and the problem of "paracrine" regulation of islet cells. Anat Embryol (Berl) 1988;178(4):297–307. doi: 10.1007/BF00698661. [DOI] [PubMed] [Google Scholar]
- Kaung H. C., Elde R. P. Distribution and morphometric quantitation of pancreatic endocrine cell types in the frog, Rana pipiens. Anat Rec. 1980 Feb;196(2):173–181. doi: 10.1002/ar.1091960208. [DOI] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., 3rd, Cutts J. H., Yamada J. Immunohistochemical study of the developing endocrine pancreas of the opossum (Didelphis virginiana). Acta Anat (Basel) 1989;135(1):84–96. doi: 10.1159/000146727. [DOI] [PubMed] [Google Scholar]
- Lozano M. T., Garcia Ayala A., Abad M. E., Agulleiro B. Pancreatic endocrine cells in sea bass (Dicentrarchus labrax L.) I. Immunocytochemical characterization of glucagon- and PP-related peptides. Gen Comp Endocrinol. 1991 Feb;81(2):187–197. doi: 10.1016/0016-6480(91)90003-o. [DOI] [PubMed] [Google Scholar]
- Malaisse-Lagae F., Stefan Y., Cox J., Perrelet A., Orci L. Identification of a lobe in the adult human pancreas rich in pancreatic polypeptide. Diabetologia. 1979 Dec;17(6):361–365. doi: 10.1007/BF01236270. [DOI] [PubMed] [Google Scholar]
- McEvoy R. C., Hegre O. D. Morphometric quantitation of the pancreatic insulin-, glucagon-, and somatostatin-positive cell populations in normal and alloxan-diabetic rats. Diabetes. 1977 Dec;26(12):1140–1146. doi: 10.2337/diab.26.12.1140. [DOI] [PubMed] [Google Scholar]
- Nakamura M., Shimada T., Fujimori O. Ultrastructural studies on the pancreatic polypeptide cell of the rat with special reference to pancreatic regional differences and changes induced by alloxan diabetes. Acta Anat (Basel) 1980;108(2):193–201. doi: 10.1159/000145300. [DOI] [PubMed] [Google Scholar]
- Orci L., Baetens D., Ravazzola M., Stefan Y., Malaisse-Lagae F. Pancreatic polypeptide and glucagon : non-random distribution in pancreatic islets. Life Sci. 1976 Dec 15;19(12):1811–1815. doi: 10.1016/0024-3205(76)90112-0. [DOI] [PubMed] [Google Scholar]
- Orci L. Macro- and micro-domains in the endocrine pancreas. Diabetes. 1982 Jun;31(6 Pt 1):538–565. doi: 10.2337/diab.31.6.538. [DOI] [PubMed] [Google Scholar]
- Orci L., Stefan Y., Bonner-Weif S., Perrelet A., Unger R. 'Obligatory' association between A and D cells demonstrated by bipolar islets of neonatal pancreas. Diabetologia. 1981 Jul;21(1):73–74. doi: 10.1007/BF03216229. [DOI] [PubMed] [Google Scholar]
- Pelletier G. Identification of four cell types in the human endocrine pancreas by immunoelectron microscopy. Diabetes. 1977 Aug;26(8):749–756. doi: 10.2337/diab.26.8.749. [DOI] [PubMed] [Google Scholar]
- Petersson B. The two types of alpha cells during the development of the guinea-pig pancreas. Z Zellforsch Mikrosk Anat. 1966;75(2):371–380. doi: 10.1007/BF00336870. [DOI] [PubMed] [Google Scholar]
- Pipeleers D., in't Veld P. I., Maes E., Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7322–7325. doi: 10.1073/pnas.79.23.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy S., Bibby N. J., Fisher S. L., Elliott R. B. Immunolocalization of insulin, glucagon, pancreatic polypeptide, and somatostatin in the pancreatic islets of the possum, Trichosurus vulpecula. Gen Comp Endocrinol. 1986 Oct;64(1):157–162. doi: 10.1016/0016-6480(86)90042-0. [DOI] [PubMed] [Google Scholar]
- Redecker P., Seipelt A., Jörns A., Bargsten G., Grube D. The microanatomy of canine islets of Langerhans: implications for intra-islet regulation. Anat Embryol (Berl) 1992;185(2):131–141. doi: 10.1007/BF00185914. [DOI] [PubMed] [Google Scholar]
- Remacle C., Hauser N., Jeanjean M., Gommers A. Morphometric analysis of endocrine pancreas in old rats. Exp Gerontol. 1977;12(5-6):207–214. doi: 10.1016/0531-5565(77)90007-9. [DOI] [PubMed] [Google Scholar]
- Rhoten W. B. Immunocytochemical localization of four hormones in the pancreas of the garter snake, Thamnophis sirtalis. Anat Rec. 1984 Feb;208(2):233–242. doi: 10.1002/ar.1092080210. [DOI] [PubMed] [Google Scholar]
- Saito K., Iwama N., Takahashi T. Morphometrical analysis on topographical difference in size distribution, number and volume of islets in the human pancreas. Tohoku J Exp Med. 1978 Feb;124(2):177–186. doi: 10.1620/tjem.124.177. [DOI] [PubMed] [Google Scholar]
- Smith P. H. Immunocytochemical localization of glucagonlike and gastric inhibitory polypeptidelike peptides in the pancreatic islets and gastrointestinal tract. Am J Anat. 1983 Sep;168(1):109–118. doi: 10.1002/aja.1001680111. [DOI] [PubMed] [Google Scholar]
- Stagner J. I., Samols E. The induction of capillary bed development by endothelial cell growth factor before islet transplantation may prevent islet ischemia. Transplant Proc. 1990 Apr;22(2):824–828. [PubMed] [Google Scholar]
- Stefan Y., Orci L., Malaisse-Lagae F., Perrelet A., Patel Y., Unger R. H. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes. 1982 Aug;31(8 Pt 1):694–700. doi: 10.2337/diab.31.8.694. [DOI] [PubMed] [Google Scholar]
- Sundler F., Håkanson R., Lundquist I., Larsson L. I. Effect of alloxan on rat pancreatic polypeptide (PP) cells. Cell Tissue Res. 1977 Mar 16;178(3):307–312. doi: 10.1007/BF00218695. [DOI] [PubMed] [Google Scholar]
- Syed Ali S. Angioarchitecture of the pancreas of the cat. Light-, scanning- and transmission electron microscopy. Cell Tissue Res. 1984;235(3):675–682. doi: 10.1007/BF00226968. [DOI] [PubMed] [Google Scholar]
- Unger R. H., Orci L. Glucagon and the A cell: physiology and pathophysiology (first two parts). N Engl J Med. 1981 Jun 18;304(25):1518–1524. doi: 10.1056/NEJM198106183042504. [DOI] [PubMed] [Google Scholar]
- WEIBEL E. R. Principles and methods for the morphometric study of the lung and other organs. Lab Invest. 1963 Feb;12:131–155. [PubMed] [Google Scholar]