Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1995 Feb;186(Pt 1):165–173.

Transient expression of transferrin receptors and localisation of iron in amoeboid microglia in postnatal rats.

C Kaur 1, E A Ling 1
PMCID: PMC1167282  PMID: 7649811

Abstract

The expression of transferrin receptors marked by the monoclonal antibody OX-26 and the localisation of iron were studied in amoeboid microglial cells in postnatal rats. Transferrin receptors were vigorously expressed in amoeboid microglia in rats ranging from 1 to 10 d of age but were undetectable in older rats. Thin serial sections showed that the OX-26 positive amoeboid microglial cells were also immunoreactive for OX-42 and ED1. Using Perls' medium, this study showed the presence of a considerable amount of iron in amoeboid microglial cells in 1-10 d rats. Most iron-containing cells were round but their number had diminished by 2 and 3 wk of age, when the iron was localised instead in some branched cells which were identified as either oligodendrocytes or ramified microglia cells. There has been much speculation on the functional significance of transferrin receptors on amoeboid microglia in postnatal rats. It is suggested that the receptors facilitate the acquisition of iron necessitated for various functions of amoeboid microglia in the developing brain. The presence of iron in some oligodendrocytes suggests their involvement in mediating iron mobilisation and storage. Its localisation in some ramified microglia in older rats indicates the possible role of these cells in sequestration and detoxification of iron in the central nervous system.

Full text

PDF
165

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
  2. Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., Raff M. C. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992 Jul 10;70(1):31–46. doi: 10.1016/0092-8674(92)90531-g. [DOI] [PubMed] [Google Scholar]
  3. Benkovic S. A., Connor J. R. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993 Dec 1;338(1):97–113. doi: 10.1002/cne.903380108. [DOI] [PubMed] [Google Scholar]
  4. Britigan B. E., Serody J. S., Hayek M. B., Charniga L. M., Cohen M. S. Uptake of lactoferrin by mononuclear phagocytes inhibits their ability to form hydroxyl radical and protects them from membrane autoperoxidation. J Immunol. 1991 Dec 15;147(12):4271–4277. [PubMed] [Google Scholar]
  5. Byrd T. F., Horwitz M. A. Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest. 1993 Mar;91(3):969–976. doi: 10.1172/JCI116318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connor J. R., Menzies S. L. Altered cellular distribution of iron in the central nervous system of myelin deficient rats. Neuroscience. 1990;34(1):265–271. doi: 10.1016/0306-4522(90)90320-4. [DOI] [PubMed] [Google Scholar]
  7. Connor J. R., Menzies S. L., St Martin S. M., Mufson E. J. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res. 1990 Dec;27(4):595–611. doi: 10.1002/jnr.490270421. [DOI] [PubMed] [Google Scholar]
  8. Cunningham T. J. Naturally occurring neuron death and its regulation by developing neural pathways. Int Rev Cytol. 1982;74:163–186. doi: 10.1016/s0074-7696(08)61172-9. [DOI] [PubMed] [Google Scholar]
  9. Deiss A. Iron metabolism in reticuloendothelial cells. Semin Hematol. 1983 Apr;20(2):81–90. [PubMed] [Google Scholar]
  10. Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
  11. Dwork A. J., Schon E. A., Herbert J. Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience. 1988 Oct;27(1):333–345. doi: 10.1016/0306-4522(88)90242-4. [DOI] [PubMed] [Google Scholar]
  12. Espinosa de los Monteros A., Foucaud B. Effect of iron and transferrin on pure oligodendrocytes in culture; characterization of a high-affinity transferrin receptor at different ages. Brain Res. 1987 Sep;432(1):123–130. doi: 10.1016/0165-3806(87)90014-9. [DOI] [PubMed] [Google Scholar]
  13. Finch C. A., Huebers H. Perspectives in iron metabolism. N Engl J Med. 1982 Jun 24;306(25):1520–1528. doi: 10.1056/NEJM198206243062504. [DOI] [PubMed] [Google Scholar]
  14. Francois C., Nguyen-Legros J., Percheron G. Topographical and cytological localization of iron in rat and monkey brains. Brain Res. 1981 Jun 29;215(1-2):317–322. doi: 10.1016/0006-8993(81)90510-2. [DOI] [PubMed] [Google Scholar]
  15. Gerber M. R., Connor J. R. Do oligodendrocytes mediate iron regulation in the human brain? Ann Neurol. 1989 Jul;26(1):95–98. doi: 10.1002/ana.410260115. [DOI] [PubMed] [Google Scholar]
  16. Giometto B., Bozza F., Argentiero V., Gallo P., Pagni S., Piccinno M. G., Tavolato B. Transferrin receptors in rat central nervous system. An immunocytochemical study. J Neurol Sci. 1990 Aug;98(1):81–90. doi: 10.1016/0022-510x(90)90183-n. [DOI] [PubMed] [Google Scholar]
  17. HALLGREN B., SOURANDER P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958 Oct;3(1):41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. [DOI] [PubMed] [Google Scholar]
  18. Hamilton T. A., Weiel J. E., Adams D. O. Expression of the transferrin receptor in murine peritoneal macrophages is modulated in the different stages of activation. J Immunol. 1984 May;132(5):2285–2290. [PubMed] [Google Scholar]
  19. Hill J. M., Switzer R. C., 3rd The regional distribution and cellular localization of iron in the rat brain. Neuroscience. 1984 Mar;11(3):595–603. doi: 10.1016/0306-4522(84)90046-0. [DOI] [PubMed] [Google Scholar]
  20. Imamoto K., Leblond C. P. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. J Comp Neurol. 1978 Jul 1;180(1):139–163. doi: 10.1002/cne.901800109. [DOI] [PubMed] [Google Scholar]
  21. Jefferies W. A., Brandon M. R., Hunt S. V., Williams A. F., Gatter K. C., Mason D. Y. Transferrin receptor on endothelium of brain capillaries. Nature. 1984 Nov 8;312(5990):162–163. doi: 10.1038/312162a0. [DOI] [PubMed] [Google Scholar]
  22. Kaur C., Ling E. A., Wong W. C. Labelling of amoeboid microglial cells in rats of various ages following an intravenous injection of horseradish peroxidase. Acta Anat (Basel) 1986;125(2):132–137. doi: 10.1159/000146150. [DOI] [PubMed] [Google Scholar]
  23. Kaur C., Ling E. A., Wong W. C. Scanning electron microscopy of transitory subependymal cysts in the developing midbrain of postnatal rats. Arch Histol Cytol. 1989 Jul;52(3):311–317. doi: 10.1679/aohc.52.311. [DOI] [PubMed] [Google Scholar]
  24. Laskey J., Webb I., Schulman H. M., Ponka P. Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis. Exp Cell Res. 1988 May;176(1):87–95. doi: 10.1016/0014-4827(88)90123-1. [DOI] [PubMed] [Google Scholar]
  25. Lin H. H., Connor J. R. The development of the transferrin-transferrin receptor system in relation to astrocytes, MBP and galactocerebroside in normal and myelin-deficient rat optic nerves. Brain Res Dev Brain Res. 1989 Oct 1;49(2):281–293. doi: 10.1016/0165-3806(89)90029-1. [DOI] [PubMed] [Google Scholar]
  26. Ling E. A., Kaur L. C., Yick T. Y., Wong W. C. Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol (Berl) 1990;182(5):481–486. doi: 10.1007/BF00178913. [DOI] [PubMed] [Google Scholar]
  27. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  28. Milligan C. E., Cunningham T. J., Levitt P. Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol. 1991 Dec 1;314(1):125–135. doi: 10.1002/cne.903140112. [DOI] [PubMed] [Google Scholar]
  29. Nakajima K., Kohsaka S. Functional roles of microglia in the brain. Neurosci Res. 1993 Aug;17(3):187–203. doi: 10.1016/0168-0102(93)90047-t. [DOI] [PubMed] [Google Scholar]
  30. Oh T. H., Markelonis G. J., Royal G. M., Bregman B. S. Immunocytochemical distribution of transferrin and its receptor in the developing chicken nervous system. Brain Res. 1986 Dec;395(2):207–220. doi: 10.1016/s0006-8993(86)80199-8. [DOI] [PubMed] [Google Scholar]
  31. Oppenheim R. W., Prevette D., Tytell M., Homma S. Naturally occurring and induced neuronal death in the chick embryo in vivo requires protein and RNA synthesis: evidence for the role of cell death genes. Dev Biol. 1990 Mar;138(1):104–113. doi: 10.1016/0012-1606(90)90180-q. [DOI] [PubMed] [Google Scholar]
  32. Raivich G., Graeber M. B., Gehrmann J., Kreutzberg G. W. Transferrin Receptor Expression and Iron Uptake in the Injured and Regenerating Rat Sciatic Nerve. Eur J Neurosci. 1991;3(10):919–927. doi: 10.1111/j.1460-9568.1991.tb00027.x. [DOI] [PubMed] [Google Scholar]
  33. Sievers J., Abele D., Mangold U. Transitory subependymal cysts in the developing rat rhombencephalon. Anat Embryol (Berl) 1981;161(4):433–451. doi: 10.1007/BF00316053. [DOI] [PubMed] [Google Scholar]
  34. Swaiman K. F., Machen V. L. Iron uptake by mammalian cortical neurons. Ann Neurol. 1984 Jul;16(1):66–70. doi: 10.1002/ana.410160113. [DOI] [PubMed] [Google Scholar]
  35. Swaiman K. F., Machen V. L. The effect of iron on mammalian cortical neurons in culture. Neurochem Res. 1985 Sep;10(9):1261–1268. doi: 10.1007/BF00964844. [DOI] [PubMed] [Google Scholar]
  36. Taylor E. M., Morgan E. H. Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res. 1990 Aug 1;55(1):35–42. doi: 10.1016/0165-3806(90)90103-6. [DOI] [PubMed] [Google Scholar]
  37. Xu J., Kaur C., Ling E. A. Variation with age in the labelling of amoeboid microglial cells in rats following intraperitoneal or intravenous injection of a fluorescent dye. J Anat. 1993 Feb;182(Pt 1):55–63. [PMC free article] [PubMed] [Google Scholar]
  38. Xu J., Ling E. A. Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. J Anat. 1994 Apr;184(Pt 2):227–237. [PMC free article] [PubMed] [Google Scholar]
  39. Xu J., Ling E. A. Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injections of lipopolysaccharide. J Anat. 1994 Apr;184(Pt 2):285–296. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES