Abstract
The distribution of the calcium binding protein calbindin D28k (CaBP) in the rat and gerbil olivocerebellar system was compared and an ultrastructural analysis of the inferior olive and cerebellum was performed in the gerbil. CaBP is present in the perikarya and dendritic arborisations of inferior olivary neurons. The olivocerebellar projection in the inferior cerebellar peduncle stains for CaBP. CaBP is also contained in the terminal branches of the olivocerebellar projection: the climbing fibres in the inner molecular layer of the cerebellum. Thus CaBP is a reliable marker for the whole olivocerebellar projection in adult rodents. Presence of the calcium binding protein CaBP in inferior olivary neurons may influence the different calcium conductances of their dendritic, somatic and terminal compartments responsible for the physiological properties of these nerve cells.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. C. Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem. 1981 Jun;29(6):775–775. doi: 10.1177/29.6.7252134. [DOI] [PubMed] [Google Scholar]
- Bredderman P. J., Wasserman R. H. Chemical composition, affinity for calcium, and some related properties of the vitamin D dependent calcium-binding protein. Biochemistry. 1974 Apr 9;13(8):1687–1694. doi: 10.1021/bi00705a021. [DOI] [PubMed] [Google Scholar]
- Celio M. R., Baier W., Schärer L., Gregersen H. J., de Viragh P. A., Norman A. W. Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. Cell Calcium. 1990 Oct;11(9):599–602. doi: 10.1016/0143-4160(90)90014-l. [DOI] [PubMed] [Google Scholar]
- Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375–475. doi: 10.1016/0306-4522(90)90091-h. [DOI] [PubMed] [Google Scholar]
- Chan-Palay V. The recurrent collaterals of Purkinje cell axons: a correlated study of the rat's cerebellar cortex with electron microscopy and the Golgi method. Z Anat Entwicklungsgesch. 1971;134(2):200–234. doi: 10.1007/BF00519300. [DOI] [PubMed] [Google Scholar]
- Cheung W. T., Richards D. E., Rogers J. H. Calcium binding by chick calretinin and rat calbindin D28k synthesised in bacteria. Eur J Biochem. 1993 Jul 15;215(2):401–410. doi: 10.1111/j.1432-1033.1993.tb18047.x. [DOI] [PubMed] [Google Scholar]
- Christakos S., Gabrielides C., Rhoten W. B. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 1989 Feb;10(1):3–26. doi: 10.1210/edrv-10-1-3. [DOI] [PubMed] [Google Scholar]
- Fournet N., Garcia-Segura L. M., Norman A. W., Orci L. Selective localization of calcium-binding protein in human brainstem, cerebellum and spinal cord. Brain Res. 1986 Dec 10;399(2):310–316. doi: 10.1016/0006-8993(86)91521-0. [DOI] [PubMed] [Google Scholar]
- Frantz G. D., Tobin A. J. Cellular distribution of calbindin D28K mRNAs in the adult mouse brain. J Neurosci Res. 1994 Feb 15;37(3):287–302. doi: 10.1002/jnr.490370302. [DOI] [PubMed] [Google Scholar]
- Garcia-Segura L. M., Baetens D., Roth J., Norman A. W., Orci L. Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res. 1984 Mar 26;296(1):75–86. doi: 10.1016/0006-8993(84)90512-2. [DOI] [PubMed] [Google Scholar]
- Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991 Feb;14(2):60–67. doi: 10.1016/0166-2236(91)90022-m. [DOI] [PubMed] [Google Scholar]
- Heizmann C. W. Calcium-binding proteins of the EF-type. J Cardiovasc Pharmacol. 1988;12 (Suppl 5):S30–S37. [PubMed] [Google Scholar]
- Hunziker W. The 28-kDa vitamin D-dependent calcium-binding protein has a six-domain structure. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7578–7582. doi: 10.1073/pnas.83.20.7578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jande S. S., Maler L., Lawson D. E. Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature. 1981 Dec 24;294(5843):765–767. doi: 10.1038/294765a0. [DOI] [PubMed] [Google Scholar]
- Kawaguchi Y., Kubota Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol. 1993 Jul;70(1):387–396. doi: 10.1152/jn.1993.70.1.387. [DOI] [PubMed] [Google Scholar]
- Kosaka T., Kosaka K., Nakayama T., Hunziker W., Heizmann C. W. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp Brain Res. 1993;93(3):483–491. doi: 10.1007/BF00229363. [DOI] [PubMed] [Google Scholar]
- Köhr G., Mody I. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells. J Gen Physiol. 1991 Nov;98(5):941–967. doi: 10.1085/jgp.98.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larramendi E. M., Victor T. Synapses on the Purkinje cell spines in the mouse. An electronmicroscopic study. Brain Res. 1967 May;5(1):15–30. doi: 10.1016/0006-8993(67)90216-8. [DOI] [PubMed] [Google Scholar]
- Leathers V. L., Linse S., Forsén S., Norman A. W. Calbindin-D28K, a 1 alpha,25-dihydroxyvitamin D3-induced calcium-binding protein, binds five or six Ca2+ ions with high affinity. J Biol Chem. 1990 Jun 15;265(17):9838–9841. [PubMed] [Google Scholar]
- Lledo P. M., Somasundaram B., Morton A. J., Emson P. C., Mason W. T. Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron. 1992 Nov;9(5):943–954. doi: 10.1016/0896-6273(92)90246-a. [DOI] [PubMed] [Google Scholar]
- Llinas R., Baker R., Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974 May;37(3):560–571. doi: 10.1152/jn.1974.37.3.560. [DOI] [PubMed] [Google Scholar]
- Llinás R., Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986 Jul;376:163–182. doi: 10.1113/jphysiol.1986.sp016147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981 Jun;315:569–584. doi: 10.1113/jphysiol.1981.sp013764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattson M. P., Rychlik B., Chu C., Christakos S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron. 1991 Jan;6(1):41–51. doi: 10.1016/0896-6273(91)90120-o. [DOI] [PubMed] [Google Scholar]
- Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
- Nitsch C., Wolfrum G., Schaefer F., Scotti A. L., Unger J. Opposite effects of intranigral ibotenic acid and 6-hydroxydopamine on motor behavior and on striatal neuropeptide Y neurons. Brain Res Bull. 1993;30(1-2):21–32. doi: 10.1016/0361-9230(93)90035-a. [DOI] [PubMed] [Google Scholar]
- Norman A. W., Roth J., Orci L. The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr Rev. 1982 Fall;3(4):331–366. doi: 10.1210/edrv-3-4-331. [DOI] [PubMed] [Google Scholar]
- O'Leary J. L., Petty J., Smith J. M., O'Leary M., Inukai J. Cerebellar cortex of rat and other animals. A structural and ultrastructural study. J Comp Neurol. 1968 Dec;134(4):401–432. doi: 10.1002/cne.901340404. [DOI] [PubMed] [Google Scholar]
- Pansini A. R., Christakos S. Vitamin D-dependent calcium-binding protein in rat kidney. Purification and physiocochemical and immunological characterization. J Biol Chem. 1984 Aug 10;259(15):9735–9741. [PubMed] [Google Scholar]
- Rogers J. H. Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience. 1989;31(3):711–721. doi: 10.1016/0306-4522(89)90435-1. [DOI] [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature. 1975 Mar 20;254(5497):250–252. doi: 10.1038/254250a0. [DOI] [PubMed] [Google Scholar]
- Rossi F., Borsello T., Strata P. Exposure to kainic acid mimics the effects of axotomy in cerebellar Purkinje cells of the adult rat. Eur J Neurosci. 1994 Mar 1;6(3):392–402. doi: 10.1111/j.1460-9568.1994.tb00282.x. [DOI] [PubMed] [Google Scholar]
- SCHEIBEL M. E., SCHEIBEL A. B. Observations on the intracortical relations of the climbing fibers of the cerebellum; a Golgi study. J Comp Neurol. 1954 Dec;101(3):733–763. doi: 10.1002/cne.901010305. [DOI] [PubMed] [Google Scholar]
- Scotti A. L., Nitsch C. Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity. Anat Embryol (Berl) 1992;185(2):163–167. doi: 10.1007/BF00185917. [DOI] [PubMed] [Google Scholar]
- Scotti A. L., Nitsch C. The perforant path in the seizure sensitive gerbil contains the Ca(2+)-binding protein parvalbumin. Exp Brain Res. 1991;85(1):137–143. doi: 10.1007/BF00229994. [DOI] [PubMed] [Google Scholar]
- Shibuki K., Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature. 1991 Jan 24;349(6307):326–328. doi: 10.1038/349326a0. [DOI] [PubMed] [Google Scholar]
- Sotelo C., Gotow T., Wassef M. Localization of glutamic-acid-decarboxylase-immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions. J Comp Neurol. 1986 Oct 1;252(1):32–50. doi: 10.1002/cne.902520103. [DOI] [PubMed] [Google Scholar]
- Sotelo C., Llinas R., Baker R. Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol. 1974 May;37(3):541–559. doi: 10.1152/jn.1974.37.3.541. [DOI] [PubMed] [Google Scholar]
- Southam Eric, Garthwaite John. Climbing Fibres as a Source of Nitric Oxide in the Cerebellum. Eur J Neurosci. 1991;3(4):379–382. doi: 10.1111/j.1460-9568.1991.tb00825.x. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Bennett M. V. Physiology and pharmacology of gap junctions. Annu Rev Physiol. 1985;47:281–303. doi: 10.1146/annurev.ph.47.030185.001433. [DOI] [PubMed] [Google Scholar]
- Séquier J. M., Hunziker W., Andressen C., Celio M. R. Calbindin D-28k Protein and mRNA Localization in the Rat Brain. Eur J Neurosci. 1990;2(12):1118–1126. doi: 10.1111/j.1460-9568.1990.tb00023.x. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Lipscombe D., Madison D. V., Bley K. R., Fox A. P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988 Oct;11(10):431–438. doi: 10.1016/0166-2236(88)90194-4. [DOI] [PubMed] [Google Scholar]
- Wassef M., Chedotal A., Cholley B., Thomasset M., Heizmann C. W., Sotelo C. Development of the olivocerebellar projection in the rat: I. Transient biochemical compartmentation of the inferior olive. J Comp Neurol. 1992 Sep 22;323(4):519–536. doi: 10.1002/cne.903230405. [DOI] [PubMed] [Google Scholar]
- Wiener E. C., Loewenstein W. R. Correction of cell-cell communication defect by introduction of a protein kinase into mutant cells. 1983 Sep 29-Oct 5Nature. 305(5933):433–435. doi: 10.1038/305433a0. [DOI] [PubMed] [Google Scholar]