Abstract
The human ovarian granulosa cell is perhaps the most widely studied endocrine cell, but little quantitative structural information exists for this cell. In the present study new and traditional stereological probes have been employed to provide quantitative structural information on these functionally important cells. Granulosa cells were obtained from follicular aspirations from 10 women during in vitro fertilisation procedures. Initially 2 methods were used to estimate the mean nuclear volume of these cells: the mean number weighted nuclear volume was estimated by the Selector and the mean volume weighted nuclear volume by the point sampled intercept method. It was found that the difference between the 2 volume estimates was only 8.5%. The volume weighted mean nuclear volume was used as an estimate of nuclear volume. This was subsequently corrected (taking the percentage difference as the empirical bias) and combined with fractional cell volumes (Vv) to produce estimates of cell, mitochondrial, lipid and nucleolar volume. The proportion of the cell occupied by the nucleus had a remarkably low interindividual variation (CV = 7.6%). The proportion of the nucleus occupied by euchromatin also had a striking low variation (CV < 6%). All other cellular parameters had CVs of less than 35%. The lipid composition of these cells showed the greatest interindividual variability, with a CV of 42% for relative and 54% for absolute volume. The present study outlines a simple protocol for the quantitation of granulosa cell structure using new unbiased stereological probes and providing baseline structural information.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsterdam A., Rotmensch S., Ben-Ze'ev A. Structure-function relationships in the differentiating granulosa cell. Prog Clin Biol Res. 1989;296:121–130. [PubMed] [Google Scholar]
- Bomsel-Helmreich O., Gougeon A., Thebault A., Saltarelli D., Milgrom E., Frydman R., Papiernik E. Healthy and atretic human follicles in the preovulatory phase: differences in evolution of follicular morphology and steroid content of follicular fluid. J Clin Endocrinol Metab. 1979 Apr;48(4):686–694. doi: 10.1210/jcem-48-4-686. [DOI] [PubMed] [Google Scholar]
- Botero-Ruiz W., Laufer N., DeCherney A. H., Polan M. L., Haseltine F. P., Behrman H. R. The relationship between follicular fluid steroid concentration and successful fertilization of human oocytes in vitro. Fertil Steril. 1984 Jun;41(6):820–826. doi: 10.1016/s0015-0282(16)47892-1. [DOI] [PubMed] [Google Scholar]
- Clegg E. J. Morphometric studies of the spleen of the hypoxic mouse. J Microsc. 1983 Aug;131(Pt 2):155–161. doi: 10.1111/j.1365-2818.1983.tb04242.x. [DOI] [PubMed] [Google Scholar]
- Crisp T. M., Channing C. P. Fine structural events correlated with progestin secretion during luteinization of rhesus monkey granulosa cells in culture. Biol Reprod. 1972 Aug;7(1):55–72. doi: 10.1093/biolreprod/7.1.55. [DOI] [PubMed] [Google Scholar]
- Crisp T. M., Dessouky D. A., Denys F. R. The fine structure of the human corpus luteum of early pregnancy and during the progestational phase of the mestrual cycle. Am J Anat. 1970 Jan;127(1):37–69. doi: 10.1002/aja.1001270105. [DOI] [PubMed] [Google Scholar]
- Cruz-Orive L. M., Hunziker E. B. Stereology for anisotropic cells: application to growth cartilage. J Microsc. 1986 Jul;143(Pt 1):47–80. doi: 10.1111/j.1365-2818.1986.tb02765.x. [DOI] [PubMed] [Google Scholar]
- Cruz-Orive L. M. Particle number can be estimated using a disector of unknown thickness: the selector. J Microsc. 1987 Feb;145(Pt 2):121–142. [PubMed] [Google Scholar]
- Cruz-Orive L. M., Weibel E. R. Recent stereological methods for cell biology: a brief survey. Am J Physiol. 1990 Apr;258(4 Pt 1):L148–L156. doi: 10.1152/ajplung.1990.258.4.L148. [DOI] [PubMed] [Google Scholar]
- Delforge J. P., Thomas K., Roux F., Carneiro de Siqueira J., Ferin J. Time relationships between granulosa cells growth and luteinization, and plasma luteinizing hormone discharge in human. 1. A morphometric analysis. Fertil Steril. 1972 Jan;23(1):1–11. doi: 10.1016/s0015-0282(16)38700-3. [DOI] [PubMed] [Google Scholar]
- Gundersen H. J., Bagger P., Bendtsen T. F., Evans S. M., Korbo L., Marcussen N., Møller A., Nielsen K., Nyengaard J. R., Pakkenberg B. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS. 1988 Oct;96(10):857–881. doi: 10.1111/j.1699-0463.1988.tb00954.x. [DOI] [PubMed] [Google Scholar]
- Gundersen H. J., Jensen E. B. Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J Microsc. 1985 May;138(Pt 2):127–142. doi: 10.1111/j.1365-2818.1985.tb02607.x. [DOI] [PubMed] [Google Scholar]
- Gundersen H. J., Osterby R. Optimizing sampling efficiency of stereological studies in biology: or 'do more less well!'. J Microsc. 1981 Jan;121(Pt 1):65–73. doi: 10.1111/j.1365-2818.1981.tb01199.x. [DOI] [PubMed] [Google Scholar]
- Gundersen H. J., Seefeldt T., Osterby R. Glomerular epithelial foot processes in normal man and rats. Distribution of true width and its intra- and inter-individual variation. Cell Tissue Res. 1980;205(1):147–155. doi: 10.1007/BF00234450. [DOI] [PubMed] [Google Scholar]
- Gundersen H. J. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc. 1986 Jul;143(Pt 1):3–45. [PubMed] [Google Scholar]
- Hsueh A. J., Adashi E. Y., Jones P. B., Welsh T. H., Jr Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984 Winter;5(1):76–127. doi: 10.1210/edrv-5-1-76. [DOI] [PubMed] [Google Scholar]
- Mayhew T. M. The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp Physiol. 1991 Sep;76(5):639–665. doi: 10.1113/expphysiol.1991.sp003533. [DOI] [PubMed] [Google Scholar]
- Mestwerdt W., Müller O., Brandau H. Structural analysis of granulosa cells from human ovaries in correlation with function. Adv Exp Med Biol. 1979;112:123–128. doi: 10.1007/978-1-4684-3474-3_14. [DOI] [PubMed] [Google Scholar]
- Rigby B. W., Workman J., McLean M., Hanzely L., Ledwitz-Rigby F. Morphometric analysis of in vivo development of porcine ovarian granulosa cells in preovulatory antral follicles. Cytobios. 1986;45(180):17–24. [PubMed] [Google Scholar]
- Weibel E. R. Measuring through the microscope: development and evolution of stereological methods. J Microsc. 1989 Sep;155(Pt 3):393–403. doi: 10.1111/j.1365-2818.1989.tb02898.x. [DOI] [PubMed] [Google Scholar]
- Zoller L. C. A quantitative electron microscopic analysis of the membrana granulosa of rat preovulatory follicles. Acta Anat (Basel) 1984;118(4):218–223. doi: 10.1159/000145848. [DOI] [PubMed] [Google Scholar]
- Zoller L. C., Weisz J. A quantitative cytochemical study of glucose-6-phosphate dehydrogenase and delta 5-3 beta-hydroxysteroid dehydrogenase activity in the membrana granulosa of the ovulable type of follicle of the rat. Histochemistry. 1979 Aug;62(2):125–135. doi: 10.1007/BF00493314. [DOI] [PubMed] [Google Scholar]