Abstract
There are a number of quantitative relationships between geometric parameters describing the structure of the normal human cerebral cortex examined in vivo using volumetric magnetic resonance imaging. A voxel-counting method is used to estimate grey-white interface surface area. The effects of bias associated with the method are considered. In 33 normal controls, the cerebral hemispheres were symmetric in terms of total volume, irrespective of handedness, but not in terms of surface areas for right-handers. The surface area of the grey matter-white matter interface was directly proportional to the cortical grey matter volume, suggesting that growth of the neocortex is primarily tangential, with repetition of a basic structural element rather than gross alterations in the thickness of the cortex. The majority of the surface area of the grey-white interface lies within gyral white matter cores. The mean thickness of the cortex of the right cerebral hemisphere in vivo was 3.0 mm and that of the left 3.3 mm. There was a relationship between the cross-sectional area of the corpus callosum and grey-white interface surface area, suggesting that a fixed proportion and cortical neurons extend interhemispheric axons. These findings suggest that there are general architectural principles governing the organisation of the complex, but ordered, human cerebral cortex.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboitiz F., Scheibel A. B., Fisher R. S., Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992 Dec 11;598(1-2):143–153. doi: 10.1016/0006-8993(92)90178-c. [DOI] [PubMed] [Google Scholar]
- Armstrong E., Curtis M., Buxhoeveden D. P., Fregoe C., Zilles K., Casanova M. F., McCarthy W. F. Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis. Cereb Cortex. 1991 Sep-Oct;1(5):426–432. doi: 10.1093/cercor/1.5.426. [DOI] [PubMed] [Google Scholar]
- Armstrong E., Schleicher A., Omran H., Curtis M., Zilles K. The ontogeny of human gyrification. Cereb Cortex. 1995 Jan-Feb;5(1):56–63. doi: 10.1093/cercor/5.1.56. [DOI] [PubMed] [Google Scholar]
- Baddeley A. J., Gundersen H. J., Cruz-Orive L. M. Estimation of surface area from vertical sections. J Microsc. 1986 Jun;142(Pt 3):259–276. doi: 10.1111/j.1365-2818.1986.tb04282.x. [DOI] [PubMed] [Google Scholar]
- Barth P. G. Disorders of neuronal migration. Can J Neurol Sci. 1987 Feb;14(1):1–16. doi: 10.1017/s031716710002610x. [DOI] [PubMed] [Google Scholar]
- Bear D., Schiff D., Saver J., Greenberg M., Freeman R. Quantitative analysis of cerebral asymmetries. Fronto-occipital correlation, sexual dimorphism and association with handedness. Arch Neurol. 1986 Jun;43(6):598–603. doi: 10.1001/archneur.1986.00520060060019. [DOI] [PubMed] [Google Scholar]
- Braendgaard H., Evans S. M., Howard C. V., Gundersen H. J. The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. J Microsc. 1990 Mar;157(Pt 3):285–304. doi: 10.1111/j.1365-2818.1990.tb02967.x. [DOI] [PubMed] [Google Scholar]
- Cook M. J., Fish D. R., Shorvon S. D., Straughan K., Stevens J. M. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain. 1992 Aug;115(Pt 4):1001–1015. doi: 10.1093/brain/115.4.1001. [DOI] [PubMed] [Google Scholar]
- Filipek P. A., Richelme C., Kennedy D. N., Caviness V. S., Jr The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex. 1994 Jul-Aug;4(4):344–360. doi: 10.1093/cercor/4.4.344. [DOI] [PubMed] [Google Scholar]
- Gundersen H. J. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc. 1986 Jul;143(Pt 1):3–45. [PubMed] [Google Scholar]
- Gur R. C., Packer I. K., Hungerbuhler J. P., Reivich M., Obrist W. D., Amarnek W. S., Sackeim H. A. Differences in the distribution of gray and white matter in human cerebral hemispheres. Science. 1980 Mar 14;207(4436):1226–1228. doi: 10.1126/science.7355287. [DOI] [PubMed] [Google Scholar]
- HAUG H. Remarks on the determination and significance of the gray cell coefficient. J Comp Neurol. 1956 Jun;104(3):473–492. doi: 10.1002/cne.901040306. [DOI] [PubMed] [Google Scholar]
- Haug H. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat. 1987 Oct;180(2):126–142. doi: 10.1002/aja.1001800203. [DOI] [PubMed] [Google Scholar]
- Henery C. C., Mayhew T. M. The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. J Anat. 1989 Dec;167:167–180. [PMC free article] [PubMed] [Google Scholar]
- Hofman M. A. Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav Evol. 1985;27(1):28–40. doi: 10.1159/000118718. [DOI] [PubMed] [Google Scholar]
- Kertesz A., Polk M., Howell J., Black S. E. Cerebral dominance, sex, and callosal size in MRI. Neurology. 1987 Aug;37(8):1385–1388. doi: 10.1212/wnl.37.8.1385. [DOI] [PubMed] [Google Scholar]
- Laissy J. P., Patrux B., Duchateau C., Hannequin D., Hugonet P., Ait-Yahia H., Thiebot J. Midsagittal MR measurements of the corpus callosum in healthy subjects and diseased patients: a prospective survey. AJNR Am J Neuroradiol. 1993 Jan-Feb;14(1):145–154. [PMC free article] [PubMed] [Google Scholar]
- Mayhew T. M., Olsen D. R. Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J Anat. 1991 Oct;178:133–144. [PMC free article] [PubMed] [Google Scholar]
- Miller A. K., Alston R. L., Corsellis J. A. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol Appl Neurobiol. 1980 Mar-Apr;6(2):119–132. doi: 10.1111/j.1365-2990.1980.tb00283.x. [DOI] [PubMed] [Google Scholar]
- Prothero J. W., Sundsten J. W. Folding of the cerebral cortex in mammals. A scaling model. Brain Behav Evol. 1984;24(2-3):152–167. doi: 10.1159/000121313. [DOI] [PubMed] [Google Scholar]
- Rademacher J., Caviness V. S., Jr, Steinmetz H., Galaburda A. M. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex. 1993 Jul-Aug;3(4):313–329. doi: 10.1093/cercor/3.4.313. [DOI] [PubMed] [Google Scholar]
- Raymond A. A., Fish D. R., Sisodiya S. M., Alsanjari N., Stevens J. M., Shorvon S. D. Abnormalities of gyration, heterotopias, tuberous sclerosis, focal cortical dysplasia, microdysgenesis, dysembryoplastic neuroepithelial tumour and dysgenesis of the archicortex in epilepsy. Clinical, EEG and neuroimaging features in 100 adult patients. Brain. 1995 Jun;118(Pt 3):629–660. doi: 10.1093/brain/118.3.629. [DOI] [PubMed] [Google Scholar]
- Richman D. P., Stewart R. M., Hutchinson J. W., Caviness V. S., Jr Mechanical model of brain convolutional development. Science. 1975 Jul 4;189(4196):18–21. doi: 10.1126/science.1135626. [DOI] [PubMed] [Google Scholar]
- Rockel A. J., Hiorns R. W., Powell T. P. The basic uniformity in structure of the neocortex. Brain. 1980 Jun;103(2):221–244. doi: 10.1093/brain/103.2.221. [DOI] [PubMed] [Google Scholar]
- Ruppin E., Schwartz E. L., Yeshurun Y. Examining the volume efficiency of the cortical architecture in a multi-processor network model. Biol Cybern. 1993;70(1):89–94. doi: 10.1007/BF00202570. [DOI] [PubMed] [Google Scholar]
- Sisodiya S. M., Free S. L., Stevens J. M., Fish D. R., Shorvon S. D. Widespread cerebral structural changes in patients with cortical dysgenesis and epilepsy. Brain. 1995 Aug;118(Pt 4):1039–1050. doi: 10.1093/brain/118.4.1039. [DOI] [PubMed] [Google Scholar]
- TOMASCH J. Size, distribution, and number of fibres in the human corpus callosum. Anat Rec. 1954 May;119(1):119–135. doi: 10.1002/ar.1091190109. [DOI] [PubMed] [Google Scholar]
- Witelson S. F. The brain connection: the corpus callosum is larger in left-handers. Science. 1985 Aug 16;229(4714):665–668. doi: 10.1126/science.4023705. [DOI] [PubMed] [Google Scholar]