Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1996 Apr;188(Pt 2):491–495.

An immunohistochemical study of the intraventricular macrophages in induced hydrocephalus in prenatal rats following a maternal injection of 6-aminonicotinamide.

J Lu 1, C Kaur 1, E A Ling 1
PMCID: PMC1167585  PMID: 8621348

Abstract

Hydrocephalus was induced experimentally in prenatal rats following an injection of 6-aminonicotinamide (6-AN) into pregnant rats. The most remarkable change of the dilated lateral ventricles was in a marked increase in the number of intraventricular macrophages, some of which were laden with ingested erythrocytes. The immunoreactivity of the intraventricular macrophages was noticeably enhanced with the monoclonal antibodies OX-42 and OX-18 which marked the complement type 3 receptors (CR3) and major histocompatibility complex (MHC) class I antigen, respectively. Many immunoreactive cells with similar external morphology were observed to penetrate the ependymal lining at the roof of the ventricles. This, coupled with the concomitant depletion of the conglomeration of amoeboid microglia in the supraventricular corpus callosum, suggests that the upsurge of immunoreactive intraventricular macrophages in hydrocephalus was partly due to the influx of amoeboid microglia probably in response to the damage of the ventricular walls and possible alteration in the contents of the cerebrospinal fluid. The significance of the upregulation of complement type 3 receptors and major histocompatibility complex class I antigens on epiplexus cells in hydrocephalic rats remains to be explored, although our results suggest that the surface antigens may be involved in increased phagocytosis and/or a possible immune response.

Full text

PDF
491

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R., Fearon D. T. Endocytosis of the C3b receptor of complement within coated pits in human polymorphonuclear leukocytes and monocytes. Lab Invest. 1983 Feb;48(2):162–168. [PubMed] [Google Scholar]
  2. Aikawa H., Kobayashi S., Suzuki K. Aqueductal lesions in 6-aminonicotinamide-treated suckling mice. Acta Neuropathol. 1986;71(3-4):243–250. doi: 10.1007/BF00688046. [DOI] [PubMed] [Google Scholar]
  3. Akiyama H., Itagaki S., McGeer P. L. Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. J Neurosci Res. 1988;20(2):147–157. doi: 10.1002/jnr.490200202. [DOI] [PubMed] [Google Scholar]
  4. Bleier R., Albrecht R. Supraependymal macrophages of third ventricle of hamster: morphological, functional and histochemical characterization in situ and in culture. J Comp Neurol. 1980 Aug 1;192(3):489–504. doi: 10.1002/cne.901920308. [DOI] [PubMed] [Google Scholar]
  5. CHAMBERLAIN J. G., NELSON M. M. CONGENITAL ABNORMALITIES IN THE RAT RESULTING FROM SINGLE INJECTIONS OF 6-AMINONICOTINAMIDE DURING PREGNANCY. J Exp Zool. 1963 Aug;153:285–299. doi: 10.1002/jez.1401530311. [DOI] [PubMed] [Google Scholar]
  6. Carpenter S. J., McCarthy L. E., Borison H. L. Electron microscopic study of the epiplexus (Kolmer) cells of the cat choroid plexus. Z Zellforsch Mikrosk Anat. 1970;110(4):471–486. doi: 10.1007/BF00330099. [DOI] [PubMed] [Google Scholar]
  7. Finsen B. R., Jørgensen M. B., Diemer N. H., Zimmer J. Microglial MHC antigen expression after ischemic and kainic acid lesions of the adult rat hippocampus. Glia. 1993 Jan;7(1):41–49. doi: 10.1002/glia.440070109. [DOI] [PubMed] [Google Scholar]
  8. Johnson W. J., McColl J. D. 6-Aminonicotinamide--a Potent Nicotinamide Antagonist. Science. 1955 Oct 28;122(3174):834–834. doi: 10.1126/science.122.3174.834. [DOI] [PubMed] [Google Scholar]
  9. Ling E. A., Tseng C. Y., Wong W. C. An electron microscopical study of epiplexus and supraependymal cells in the prenatal rat brain following a maternal injection of 6-aminonicotinamide. J Anat. 1985 Jan;140(Pt 1):119–129. [PMC free article] [PubMed] [Google Scholar]
  10. Ling E. A. Ultrastruct and origin of epiplexus cells in the telencephalic choroid plexus of postnatal rats studied by intravenous injection of carbon particles. J Anat. 1979 Oct;129(Pt 3):479–492. [PMC free article] [PubMed] [Google Scholar]
  11. Lu J., Kaur C., Ling E. A. Immunophenotypic features of epiplexus cells and their response to interferon gamma injected intraperitoneally in postnatal rats. J Anat. 1994 Aug;185(Pt 1):75–84. [PMC free article] [PubMed] [Google Scholar]
  12. Lu J., Kaur C., Ling E. A. Intraventricular macrophages in the lateral ventricles with special reference to epiplexus cells: a quantitative analysis and their uptake of fluorescent tracer injected intraperitoneally in rats of different ages. J Anat. 1993 Oct;183(Pt 2):405–414. [PMC free article] [PubMed] [Google Scholar]
  13. Lu J., Kaur C., Ling E. A. Up-regulation of surface antigens on epiplexus cells in postnatal rats following intraperitoneal injections of lipopolysaccharide. Neuroscience. 1994 Dec;63(4):1169–1178. doi: 10.1016/0306-4522(94)90581-9. [DOI] [PubMed] [Google Scholar]
  14. Lu J., Kaur C., Ling E. A. Uptake of tracer by the epiplexus cells via the choroid plexus epithelium following an intravenous or intraperitoneal injection of horseradish peroxidase in rats. J Anat. 1993 Dec;183(Pt 3):609–617. [PMC free article] [PubMed] [Google Scholar]
  15. Maxwell W. L., Hardy I. G., Watt C., McGadey J., Graham D. I., Adams J. H., Gennarelli T. A. Changes in the choroid plexus, responses by intrinsic epiplexus cells and recruitment from monocytes after experimental head acceleration injury in the non-human primate. Acta Neuropathol. 1992;84(1):78–84. doi: 10.1007/BF00427218. [DOI] [PubMed] [Google Scholar]
  16. Maxwell W. L., McGadey J. Response of intraventricular macrophages after a penetrant cerebral lesion. J Anat. 1988 Oct;160:145–155. [PMC free article] [PubMed] [Google Scholar]
  17. Moffett C. W., Paden C. M. Microglia in the rat neurohypophysis increase expression of class I major histocompatibility antigens following central nervous system injury. J Neuroimmunol. 1994 Mar;50(2):139–151. doi: 10.1016/0165-5728(94)90040-x. [DOI] [PubMed] [Google Scholar]
  18. SCHOTLAND D. L., COWEN D., GELLER L. M., WOLF A. A HISTOCHEMICAL STUDY OF THE EFFECTS OF AN ANTIMETABOLITE, 6-AMINONICOTINAMIDE, ON THE LUMBAR SPINAL CORD OF THE ADULT RAT. J Neuropathol Exp Neurol. 1965 Jan;24:97–107. doi: 10.1097/00005072-196501000-00009. [DOI] [PubMed] [Google Scholar]
  19. Streit W. J., Graeber M. B., Kreutzberg G. W. Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol. 1989 Feb;21(2-3):117–123. doi: 10.1016/0165-5728(89)90167-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sturrock R. R. A developmental study of epiplexus cells and supraependymal cells and their possible relationship to microglia. Neuropathol Appl Neurobiol. 1978 Sep-Oct;4(5):307–322. doi: 10.1111/j.1365-2990.1978.tb01345.x. [DOI] [PubMed] [Google Scholar]
  21. Weinstein D. L., Walker D. G., Akiyama H., McGeer P. L. Herpes simplex virus type I infection of the CNS induces major histocompatibility complex antigen expression on rat microglia. J Neurosci Res. 1990 May;26(1):55–65. doi: 10.1002/jnr.490260107. [DOI] [PubMed] [Google Scholar]
  22. Weller R. O., Wiśniewski H., Shulman K., Terry R. D. Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol. 1971 Oct;30(4):613–626. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES