Abstract
Nanoparticles are polymeric particles in the nanometer size range whereas microparticles are particles in the micrometre size range. Both types of particle are used as drug carriers into which drugs or antigens may be incorporated in the form of solid solutions or solid dispersions or onto which these materials may be absorbed or chemically bound. These particles have been shown to enhance the delivery of certain drugs across a number of natural and artificial membranes. In addition, the particles were shown to accumulate in areas of the intestine that appear to be the Peyer's patches. Possibly because of the combination of both effects these particles were able to significantly improve the bioavailability of some drugs after peroral administration in comparison with solutions. Recently nanoparticles coated with polysorbate 80 enabled the passage of small peptides and other drugs across the blood-brain barrier and the exhibition of a pharmacological effect after intravenous injection. Without the use of this type of nanoparticles the drugs did not cross this barrier and yielded no effect.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck P., Kreuter J., Reszka R., Fichtner I. Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumour models. J Microencapsul. 1993 Jan-Mar;10(1):101–114. doi: 10.3109/02652049309015316. [DOI] [PubMed] [Google Scholar]
- Cappel M. J., Kreuter J. Effect of nanoparticles on transdermal drug delivery. J Microencapsul. 1991 Jul-Sep;8(3):369–374. doi: 10.3109/02652049109069563. [DOI] [PubMed] [Google Scholar]
- Damgé C., Michel C., Aprahamian M., Couvreur P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes. 1988 Feb;37(2):246–251. doi: 10.2337/diab.37.2.246. [DOI] [PubMed] [Google Scholar]
- Gref R., Minamitake Y., Peracchia M. T., Trubetskoy V., Torchilin V., Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994 Mar 18;263(5153):1600–1603. doi: 10.1126/science.8128245. [DOI] [PubMed] [Google Scholar]
- Jani P., Halbert G. W., Langridge J., Florence A. T. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990 Dec;42(12):821–826. doi: 10.1111/j.2042-7158.1990.tb07033.x. [DOI] [PubMed] [Google Scholar]
- Jani P., Halbert G. W., Langridge J., Florence A. T. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol. 1989 Dec;41(12):809–812. doi: 10.1111/j.2042-7158.1989.tb06377.x. [DOI] [PubMed] [Google Scholar]
- Kreuter J., Alyautdin R. N., Kharkevich D. A., Ivanov A. A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995 Mar 13;674(1):171–174. doi: 10.1016/0006-8993(95)00023-j. [DOI] [PubMed] [Google Scholar]
- Maincent P., Le Verge R., Sado P., Couvreur P., Devissaguet J. P. Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J Pharm Sci. 1986 Oct;75(10):955–958. doi: 10.1002/jps.2600751009. [DOI] [PubMed] [Google Scholar]
- Maincent P., Thouvenot P., Amicabile C., Hoffman M., Kreuter J., Couvreur P., Devissaguet J. P. Lymphatic targeting of polymeric nanoparticles after intraperitoneal administration in rats. Pharm Res. 1992 Dec;9(12):1534–1539. doi: 10.1023/a:1015895804597. [DOI] [PubMed] [Google Scholar]
- Schäfer V., von Briesen H., Andreesen R., Steffan A. M., Royer C., Tröster S., Kreuter J., Rübsamen-Waigmann H. Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res. 1992 Apr;9(4):541–546. doi: 10.1023/a:1015852732512. [DOI] [PubMed] [Google Scholar]