Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1996 Oct;189(Pt 2):285–292.

Innervation of the palpebral conjunctiva and the superior tarsal muscle in the cynomolgous monkey: a retrograde fluorescent tracing study.

F van der Werf 1, B Baljet 1, M Prins 1, G L Ruskell 1, J A Otto 1
PMCID: PMC1167745  PMID: 8886950

Abstract

Retrograde fluorescent transport of Fast Blue (FB) and Diamidino Yellow (DY) was used to study the localisation of neurons that innervate the palpebral conjunctiva and the superior tarsal muscle in the cynomolgous monkey. Labelled cell bodies of sensory neurons including a few double labelled cell bodies were found in the ophthalmic part of the ipsilateral trigeminal ganglion. Labelled cell bodies of the sympathetic neurons including a few double labelled cell bodies were located in the middle and cranial part of the ipsilateral superior cervical ganglion, with a few in the contralateral ganglion. Labelled cell bodies of the parasympathetic neurons were all found in the ipsilateral pterygopalatine ganglion and randomly distributed. Neurons were disposed in the opthalmic part of the trigeminal and superior cervical ganglia, whereas parasympathetic neurons were distributed randomly. Cells of the nodose, ciliary, geniculate, otic and first 3 spinal ganglia were unlabelled. Tracing FB and DY from the palpebral conjunctiva and superior tarsal muscle respectively, revealed double labelled neurons in the trigeminal and superior cervical ganglia, probably indicating the presence of collaterals of axons serving both the palpebral conjunctiva and the superior tarsal muscle.

Full text

PDF
285

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baljet B., van der Werf F., Otto A. J. Autonomic pathways in the orbit of the human fetus and the rhesus monkey. Doc Ophthalmol. 1989 Aug;72(3-4):247–264. doi: 10.1007/BF00153492. [DOI] [PubMed] [Google Scholar]
  2. Butler J. M., Ruskell G. L., Cole D. F., Unger W. G., Zhang S. Q., Blank M. A., McGregor G. P., Bloom S. R. Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance P levels in ocular and orbital tissues of the rabbit. Exp Eye Res. 1984 Oct;39(4):523–532. doi: 10.1016/0014-4835(84)90052-6. [DOI] [PubMed] [Google Scholar]
  3. Chung C. W., Tigges M., Stone R. A. Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci. 1996 Jan;37(1):238–245. [PubMed] [Google Scholar]
  4. Eccles J. C. The action potential of the superior cervical ganglion. J Physiol. 1935 Oct 26;85(2):179–206.2. doi: 10.1113/jphysiol.1935.sp003313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flett D. L., Bell C. Topography of functional subpopulations of neurons in the superior cervical ganglion of the rat. J Anat. 1991 Aug;177:55–66. [PMC free article] [PubMed] [Google Scholar]
  6. Karjalainen K., Tervo T., Palkama A. Catecholamine-containing and acetylcholinesterase-positive nerve fibres in the rabbit conjunctiva. Acta Ophthalmol (Copenh) 1978 Dec;56(6):911–920. doi: 10.1111/j.1755-3768.1978.tb03811.x. [DOI] [PubMed] [Google Scholar]
  7. Kuypers H. G., Bentivoglio M., Catsman-Berrevoets C. E., Bharos A. T. Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res. 1980;40(4):383–392. doi: 10.1007/BF00236147. [DOI] [PubMed] [Google Scholar]
  8. Lawrenson J. G., Ruskell G. L. The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye. J Anat. 1991 Aug;177:75–84. [PMC free article] [PubMed] [Google Scholar]
  9. Luhtala J., Palkama A., Uusitalo H. Calcitonin gene-related peptide immunoreactive nerve fibers in the rat conjunctiva. Invest Ophthalmol Vis Sci. 1991 Mar;32(3):640–645. [PubMed] [Google Scholar]
  10. Luhtala J., Uusitalo H. The distribution and origin of substance P immunoreactive nerve fibres in the rat conjunctiva. Exp Eye Res. 1991 Nov;53(5):641–646. doi: 10.1016/0014-4835(91)90224-3. [DOI] [PubMed] [Google Scholar]
  11. Macintosh S. R. The innervation of the conjunctiva in monkeys. An electron microscopic and nerve degeneration study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;192(2):105–116. doi: 10.1007/BF00410697. [DOI] [PubMed] [Google Scholar]
  12. Marfurt C. F., Echtenkamp S. F. Central projections and trigeminal ganglion location of corneal afferent neurons in the monkey, Macaca fascicularis. J Comp Neurol. 1988 Jun 15;272(3):370–382. doi: 10.1002/cne.902720307. [DOI] [PubMed] [Google Scholar]
  13. Marfurt C. F. The somatotopic organization of the cat trigeminal ganglion as determined by the horseradish peroxidase technique. Anat Rec. 1981 Sep;201(1):105–118. doi: 10.1002/ar.1092010113. [DOI] [PubMed] [Google Scholar]
  14. McGowan D. P., Lawrenson J. G., Ruskell G. L. Touch sensitivity of the eyelid margin and palpebral conjunctiva. Acta Ophthalmol (Copenh) 1994 Feb;72(1):57–60. doi: 10.1111/j.1755-3768.1994.tb02738.x. [DOI] [PubMed] [Google Scholar]
  15. Mesulam M. M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem. 1978 Feb;26(2):106–117. doi: 10.1177/26.2.24068. [DOI] [PubMed] [Google Scholar]
  16. Munger B. L., Halata Z. The sensorineural apparatus of the human eyelid. Am J Anat. 1984 Jun;170(2):181–204. doi: 10.1002/aja.1001700205. [DOI] [PubMed] [Google Scholar]
  17. Payne J. N. Comparisons between the use of true blue and diamidino yellow as retrograde fluorescent tracers. Exp Brain Res. 1987;68(3):631–642. doi: 10.1007/BF00249806. [DOI] [PubMed] [Google Scholar]
  18. Ruskell G. L. Innervation of the conjunctiva. Trans Ophthalmol Soc U K. 1985;104(Pt 4):390–395. [PubMed] [Google Scholar]
  19. Scott K. R., Tse D. T., Kronish J. W. Vertically oriented upper eyelid nerve fibers. A clinical, anatomical and immunohistochemical study. Ophthalmology. 1992 Feb;99(2):222–226. doi: 10.1016/s0161-6420(92)31989-x. [DOI] [PubMed] [Google Scholar]
  20. Sharp C. E., Smith P. G. Developmental regulation of parasympathetic nerve density by sympathetic innervation in the tarsal smooth muscle of the rat. Neuroscience. 1992 Jul;49(1):229–236. doi: 10.1016/0306-4522(92)90091-f. [DOI] [PubMed] [Google Scholar]
  21. Smith P. G., Bruckert J. W., Mills E. Reinnervation of Müller's smooth muscle by atypical sympathetic pathways following neonatal ganglionectomy in the rat: structural and functional investigations of enhanced neuroplasticity. Neuroscience. 1987 Nov;23(2):781–793. doi: 10.1016/0306-4522(87)90095-9. [DOI] [PubMed] [Google Scholar]
  22. Vidovic M., Hill C. E. Withdrawal of collaterals of sympathetic axons to the rat eye during postnatal development: the role of function. J Auton Nerv Syst. 1988 Feb;22(1):57–65. doi: 10.1016/0165-1838(88)90154-3. [DOI] [PubMed] [Google Scholar]
  23. Zhang J. D., Wang L., Wang B. R., Li J. S. Mesencephalic trigeminal nucleus neurons with collaterals to both the masseter and the inferior alveolar nerves. A fluorescent double-labeling study in the rat. Neurosci Lett. 1992 May 25;139(2):224–226. doi: 10.1016/0304-3940(92)90558-o. [DOI] [PubMed] [Google Scholar]
  24. van der Werf F., Baljet B., Prins M., Timmerman A., Otto J. A. Innervation of the superior tarsal (Müller's) muscle in the cynomolgus monkey: a retrograde tracing study. Invest Ophthalmol Vis Sci. 1993 Jun;34(7):2333–2340. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES