Abstract
Knowledge as to the blood supply of the human temporalis muscle is limited to its extramuscular path and relations, little information existing about the intramuscular vascular architecture. To investigate the 3-dimensional vascular network in the human temporalis muscle, in 5 fresh cadavers an infusion of methylmethacrylate resin was made via the carotid vessels with subsequent removal of the organic tissues by a corrosion process. The vascular corrosion casts of the temporalis muscle were studied by stereomicroscopy and scanning electron microscopy. In 6 well perfused muscle specimens, the temporalis muscle was found to be consistently supplied by 3 arteries: the anterior and posterior deep temporal arteries, and the middle temporal artery. Each primary artery branched into the secondary arterioles and then terminal arterioles. The venous network accompanied the arteries, and double veins pairing a single artery was a common finding. Arteriovenous anastomosis was absent, whereas arterioarterial and venovenous anastomoses were common. The capillaries formed a dense interlacing network with an orientation along the muscle fibres. Understanding of the intramuscular angioarchitecture of the temporalis provides the vascular basis for surgical flap manipulation and splitting design.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abul-Hassan H. S., von Drasek Ascher G., Acland R. D. Surgical anatomy and blood supply of the fascial layers of the temporal region. Plast Reconstr Surg. 1986 Jan;77(1):17–28. [PubMed] [Google Scholar]
- Antonyshyn O., Colcleugh R. G., Hurst L. N., Anderson C. The temporalis myo-osseous flap: an experimental study. Plast Reconstr Surg. 1986 Mar;77(3):406–415. doi: 10.1097/00006534-198603000-00011. [DOI] [PubMed] [Google Scholar]
- Bradley P., Brockbank J. The temporalis muscle flap in oral reconstruction. A cadaveric, animal and clinical study. J Maxillofac Surg. 1981 Aug;9(3):139–145. doi: 10.1016/s0301-0503(81)80034-3. [DOI] [PubMed] [Google Scholar]
- Eriksson E., Myrhage R. Microvascular dimensions and blood flow in skeletal muscle. Acta Physiol Scand. 1972 Oct;86(2):211–222. doi: 10.1111/j.1748-1716.1972.tb05327.x. [DOI] [PubMed] [Google Scholar]
- Grant R. T., Wright H. P. Further observations on the blood vessels of skeletal muscle (rat cremaster). J Anat. 1968 Nov;103(Pt 3):553–565. [PMC free article] [PubMed] [Google Scholar]
- Gray S. D., Renkin E. M. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles on rabbits. Microvasc Res. 1978 Nov;16(3):406–425. doi: 10.1016/0026-2862(78)90073-0. [DOI] [PubMed] [Google Scholar]
- Hjortdal V. E., Hansen E. S., Henriksen T. B., Kjølseth D., Søballe K., Djurhuus J. C. The microcirculation of myocutaneous island flaps in pigs studied with radioactive blood volume tracers and microspheres of different sizes. Plast Reconstr Surg. 1992 Jan;89(1):116–124. [PubMed] [Google Scholar]
- Mathes S. J., Nahai F. Classification of the vascular anatomy of muscles: experimental and clinical correlation. Plast Reconstr Surg. 1981 Feb;67(2):177–187. [PubMed] [Google Scholar]
- Myrhage R., Eriksson E. Vascular arrangements in hind limb muscles of the cat. J Anat. 1980 Aug;131(Pt 1):1–17. [PMC free article] [PubMed] [Google Scholar]
- Myrhage R. Microvascular supply of skeletal muscle fibres. A microangiographic, histochemical and intravital microscopic study of hind limb muscles in the rat, rabbit and cat. Acta Orthop Scand Suppl. 1977;168:1–46. doi: 10.3109/ort.1977.48.suppl-168.01. [DOI] [PubMed] [Google Scholar]
- Plyley M. J., Groom A. C. Geometrical distribution of capillaries in mammalian striated muscle. Am J Physiol. 1975 May;228(5):1376–1383. doi: 10.1152/ajplegacy.1975.228.5.1376. [DOI] [PubMed] [Google Scholar]
- Potter R. F., Groom A. C. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res. 1983 Jan;25(1):68–84. doi: 10.1016/0026-2862(83)90044-4. [DOI] [PubMed] [Google Scholar]
- Potter R. F., Mathieu-Costello O., Dietrich H. H., Groom A. C. Unusual capillary network geometry in a skeletal muscle, as seen in microcorrosion casts of M. pectoralis of pigeon. Microvasc Res. 1991 Jan;41(1):126–132. doi: 10.1016/0026-2862(91)90013-2. [DOI] [PubMed] [Google Scholar]
- ROMANUL F. C. ENZYMES IN MUSCLE. I. HISTOCHEMICAL STUDIES OF ENZYMES IN INDIVIDUAL MUSCLE FIBERS. Arch Neurol. 1964 Oct;11:355–358. doi: 10.1001/archneur.1964.00460220017003. [DOI] [PubMed] [Google Scholar]
- Shagets F. W., Panje W. R., Shore J. W. Use of temporalis muscle flaps in complicated defects of the head and face. Arch Otolaryngol Head Neck Surg. 1986 Jan;112(1):60–65. doi: 10.1001/archotol.1986.03780010062011. [DOI] [PubMed] [Google Scholar]
- Taylor G. I., Minabe T. The angiosomes of the mammals and other vertebrates. Plast Reconstr Surg. 1992 Feb;89(2):181–215. doi: 10.1097/00006534-199202000-00001. [DOI] [PubMed] [Google Scholar]
- Taylor G. I., Palmer J. H. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg. 1987 Mar;40(2):113–141. doi: 10.1016/0007-1226(87)90185-8. [DOI] [PubMed] [Google Scholar]
- Watterson P. A., Taylor G. I., Crock J. G. The venous territories of muscles: anatomical study and clinical implications. Br J Plast Surg. 1988 Nov;41(6):569–585. doi: 10.1016/0007-1226(88)90164-6. [DOI] [PubMed] [Google Scholar]
- ZWEIFACH B. W., METZ D. B. Selective distribution of blood through the terminal vascular bed of mesenteric structures and skeletal muscle. Angiology. 1955 Aug;6(4):282–290. doi: 10.1177/000331975500600402. [DOI] [PubMed] [Google Scholar]