Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1996 Aug;189(Pt 1):205–209.

Densitometric analysis of the human calcaneus.

F J Fernandez Camacho 1, P Morante Martinez 1, R Rodríguez Torres 1, A Cortes García 1, L Gomez Pellico 1
PMCID: PMC1167844  PMID: 8771413

Abstract

A densitometric study was performed on 50 dry calcanei to assess bone mineral density (BMD) in the constituent regions of the bone. In the lateral projection, the area with the highest BMD was the anterosuperior region, where the greatest concentration of trabeculae occurs. The areas with the least BMD were the intermediate or retrothalamic and the anteroinferior regions, where the neutral triangle is situated. In the dorsoplantar projection, a greater BMD was observed in the intermediate and middle regions, whereas the anterior region showed the lowest BMD. These results conform to the arrangement previously described for the trabecular system. It is concluded that bone densitometry, measured by dual x-ray absorptiometry, is useful for assessing trabecular architecture of the calcaneus.

Full text

PDF
205

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. 8th International Workshop on Bone Densitometry, April 28-May 2, 1991, Bad Reichenhall, Germany. Abstracts. Osteoporos Int. 1991 Jun;1(3):189–213. [PubMed] [Google Scholar]
  2. Aggarwal N. D., Singh G. D., Aggarwal R., Kaur R. P., Thapar S. P. A survey of osteoporosis using the calcaneum as an index. Int Orthop. 1986;10(2):147–153. [PubMed] [Google Scholar]
  3. Bacon G. E., Bacon P. J., Griffiths R. K. A neutron diffraction study of the bones of the foot. J Anat. 1984 Sep;139(Pt 2):265–273. [PMC free article] [PubMed] [Google Scholar]
  4. Brewer V., Meyer B. M., Keele M. S., Upton S. J., Hagan R. D. Role of exercise in prevention of involutional bone loss. Med Sci Sports Exerc. 1983;15(6):445–449. [PubMed] [Google Scholar]
  5. CAMERON J. R., SORENSON J. MEASUREMENT OF BONE MINERAL IN VIVO: AN IMPROVED METHOD. Science. 1963 Oct 11;142(3589):230–232. doi: 10.1126/science.142.3589.230. [DOI] [PubMed] [Google Scholar]
  6. Cameron J. R., Mazess R. B., Sorenson J. A. Precision and accuracy of bone mineral determination by direct photon absorptiometry. Invest Radiol. 1968 May-Jun;3(3):141–150. doi: 10.1097/00004424-196805000-00001. [DOI] [PubMed] [Google Scholar]
  7. Cheng S., Suominen H., Rantanen T., Parkatti T., Heikkinen E. Bone mineral density and physical activity in 50-60-year-old women. Bone Miner. 1991 Feb;12(2):123–132. doi: 10.1016/0169-6009(91)90041-w. [DOI] [PubMed] [Google Scholar]
  8. Dalén N., Olsson K. E. Bone mineral content and physical activity. Acta Orthop Scand. 1974;45(2):170–174. doi: 10.3109/17453677408989136. [DOI] [PubMed] [Google Scholar]
  9. Davis J. W., Ross P. D., Wasnich R. D., MacLean C. J., Vogel J. M. Long-term precision of bone loss rate measurements among postmenopausal women. Calcif Tissue Int. 1991 May;48(5):311–318. doi: 10.1007/BF02556150. [DOI] [PubMed] [Google Scholar]
  10. GISSANE W. A dangerous type of fracture of the foot. J Bone Joint Surg Br. 1951 Nov;33-B(4):535–538. doi: 10.1302/0301-620X.33B4.535. [DOI] [PubMed] [Google Scholar]
  11. Gierse H. The cancellous structure in the calcaneus and its relation to mechanical stressing. Anat Embryol (Berl) 1976 Dec 22;150(1):63–83. doi: 10.1007/BF00346287. [DOI] [PubMed] [Google Scholar]
  12. Harty M. Anatomic considerations in injuries of the calcaneus. Orthop Clin North Am. 1973 Jan;4(1):179–183. [PubMed] [Google Scholar]
  13. Hvid I., Jensen N. C., Bünger C., Sølund K., Djurhuus J. C. Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng Med. 1985 Apr;14(2):79–83. doi: 10.1243/emed_jour_1985_014_016_02. [DOI] [PubMed] [Google Scholar]
  14. Jensen N. C., Madsen L. P., Linde F. Topographical distribution of trabecular bone strength in the human os calcanei. J Biomech. 1991;24(1):49–55. doi: 10.1016/0021-9290(91)90325-h. [DOI] [PubMed] [Google Scholar]
  15. Lozupone E. The structure of the trabeculae of cancellous bone. 1. The calcaneus. Anat Anz. 1985;159(1-5):211–229. [PubMed] [Google Scholar]
  16. MAINLAND D. A study of age differences in the x-ray density of the adult human calcaneus; variation and sources of bias. J Gerontol. 1957 Jan;12(1):53–61. doi: 10.1093/geronj/12.1.53. [DOI] [PubMed] [Google Scholar]
  17. MAYO K. M. Quantitative measurement of bone mineral content in normal adult bone. Br J Radiol. 1961 Nov;34:693–698. doi: 10.1259/0007-1285-34-407-693. [DOI] [PubMed] [Google Scholar]
  18. Mack P. B., LaChance P. A., Vose G. P., Vogt F. B. Bone demineralization of foot and hand of gemini-titan IV, V and VII astronauts during orbital flight. Am J Roentgenol Radium Ther Nucl Med. 1967 Jul;100(3):503–511. doi: 10.2214/ajr.100.3.503. [DOI] [PubMed] [Google Scholar]
  19. Mack P. B., Vogt F. B. Roentgenographic bone density changes in astronauts during representative Apollo space flight. Am J Roentgenol Radium Ther Nucl Med. 1971 Dec;113(4):621–633. doi: 10.2214/ajr.113.4.621. [DOI] [PubMed] [Google Scholar]
  20. Mazess R. B. Estimation of bone and skeletal weight by direct photon absorptiometry. Invest Radiol. 1971 Jan-Feb;6(1):52–60. doi: 10.1097/00004424-197101000-00008. [DOI] [PubMed] [Google Scholar]
  21. McCulloch R. G., Bailey D. A., Houston C. S., Dodd B. L. Effects of physical activity, dietary calcium intake and selected lifestyle factors on bone density in young women. CMAJ. 1990 Feb 1;142(3):221–227. [PMC free article] [PubMed] [Google Scholar]
  22. Melton L. J., 3rd, Eddy D. M., Johnston C. C., Jr Screening for osteoporosis. Ann Intern Med. 1990 Apr 1;112(7):516–528. doi: 10.7326/0003-4819-112-7-516. [DOI] [PubMed] [Google Scholar]
  23. SCHRAER H. Variation in the roentgenographic density of the os calcis and phalanx with sex and age. J Pediatr. 1958 Apr;52(4):416–423. doi: 10.1016/s0022-3476(58)80062-1. [DOI] [PubMed] [Google Scholar]
  24. SCOTT J. H. The mechanical basis of bone formation. J Bone Joint Surg Br. 1957 Feb;39-B(1):134–144. doi: 10.1302/0301-620X.39B1.134. [DOI] [PubMed] [Google Scholar]
  25. Shukla S. S., Leu M. Y., Tighe T., Krutoff B., Craven J. D., Greenfield M. A. A study of the homogeneity of the trabecular bone mineral density in the calcaneus. Med Phys. 1987 Jul-Aug;14(4):687–690. doi: 10.1118/1.596039. [DOI] [PubMed] [Google Scholar]
  26. Smith E. L., Gilligan C. Physical activity effects on bone metabolism. Calcif Tissue Int. 1991;49 (Suppl):S50–S54. doi: 10.1007/BF02555089. [DOI] [PubMed] [Google Scholar]
  27. Vander Sloten J., Van der Perre G. Trabecular structure compared to stress trajectories in the proximal femur and the calcaneus. J Biomed Eng. 1989 May;11(3):203–208. doi: 10.1016/0141-5425(89)90142-8. [DOI] [PubMed] [Google Scholar]
  28. Vogel J. M., Anderson J. T. Rectilinear transmission scanning of irregular bones for quantification of mineral content. J Nucl Med. 1972 Jan;13(1):13–18. [PubMed] [Google Scholar]
  29. Vogel J. M., Wasnich R. D., Ross P. D. The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner. 1988 Oct;5(1):35–58. doi: 10.1016/0169-6009(88)90005-0. [DOI] [PubMed] [Google Scholar]
  30. Wasnich R. D., Ross P. D., Heilbrun L. K., Vogel J. M. Selection of the optimal skeletal site for fracture risk prediction. Clin Orthop Relat Res. 1987 Mar;(216):262–269. [PubMed] [Google Scholar]
  31. Wilson C. R., Madsen M. Dichromatic absorptiometry of vertebral bone mineral content. Invest Radiol. 1977 Mar-Apr;12(2):180–184. doi: 10.1097/00004424-197703000-00014. [DOI] [PubMed] [Google Scholar]
  32. Yettram A. L., Camilleri N. N. The forces acting on the human calcaneus. J Biomed Eng. 1993 Jan;15(1):46–50. doi: 10.1016/0141-5425(93)90092-d. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES