Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1982 May;134(Pt 3):415–442.

Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production.

I H Smart, G M McSherry
PMCID: PMC1167884  PMID: 7107510

Abstract

The histogenesis of the isocortical segment of the lateral telencephalic wall at the coronal level of the interventricular foramen was studied in mice between the ages of E10 and the adult. The proliferative activity of the periventricular germinal layers was correlated with changes in cell distributions in the intermediate layer. The appearances were consistent with a wave of differentiation moving across the ventricular layer from lateral to medial and a peak of neuron production occurring about E13. The sequence of changes was analysed using the concept of a radial unit composed of ventricular cells and their related progeny of neurons. The observed histological changes were interpreted as the result of radial units of similar productive history entering and completing the histogenetic sequence at successively later times along a lateromedial gradient. Some of the implications of this approach were examined and discussed in relation to the general evolutionary properties of such a system of histogenesis.

Full text

PDF
415

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M., Rogers A. W. The migration of neuroblasts in the developing cerebral cortex. J Anat. 1965 Oct;99(Pt 4):691–709. [PMC free article] [PubMed] [Google Scholar]
  2. Furshpan E. J., Potter D. D. Low-resistance junctions between cells in embryos and tissue culture. Curr Top Dev Biol. 1968;3:95–127. doi: 10.1016/s0070-2153(08)60352-x. [DOI] [PubMed] [Google Scholar]
  3. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hicks S. P., D'Amato C. J. Cell migrations to the isocortex in the rat. Anat Rec. 1968 Mar;160(3):619–634. doi: 10.1002/ar.1091600311. [DOI] [PubMed] [Google Scholar]
  5. Kornguth S. E., Scott G. The role of climbing fibers in the formation of Purkinje cell dendrites. J Comp Neurol. 1972 Sep;146(1):61–82. doi: 10.1002/cne.901460105. [DOI] [PubMed] [Google Scholar]
  6. Korr H. Proliferation of different cell types in the brain. Adv Anat Embryol Cell Biol. 1980;61:1–72. doi: 10.1007/978-3-642-67577-5. [DOI] [PubMed] [Google Scholar]
  7. Levitt P., Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol. 1980 Oct 1;193(3):815–840. doi: 10.1002/cne.901930316. [DOI] [PubMed] [Google Scholar]
  8. MOUNTCASTLE V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol. 1957 Jul;20(4):408–434. doi: 10.1152/jn.1957.20.4.408. [DOI] [PubMed] [Google Scholar]
  9. Marin-Padilla M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 1978 Feb 20;152(2):109–126. doi: 10.1007/BF00315920. [DOI] [PubMed] [Google Scholar]
  10. Marin-Padilla M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch. 1971;134(2):117–145. doi: 10.1007/BF00519296. [DOI] [PubMed] [Google Scholar]
  11. Morest D. K. A study of neurogenesis in the forebrain of opossum pouch young. Z Anat Entwicklungsgesch. 1970;130(4):265–305. doi: 10.1007/BF00520999. [DOI] [PubMed] [Google Scholar]
  12. Opdam R., Kemali M., Nieuwenhuys R. Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol. 1976 Feb 1;165(3):307–332. doi: 10.1002/cne.901650304. [DOI] [PubMed] [Google Scholar]
  13. Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 1974 Feb 1;183(4123):425–427. doi: 10.1126/science.183.4123.425. [DOI] [PubMed] [Google Scholar]
  14. Rickmann M., Chronwall B. M., Wolff J. R. On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol (Berl) 1977 Dec 2;151(3):285–307. doi: 10.1007/BF00318931. [DOI] [PubMed] [Google Scholar]
  15. SAUER M. E., WALKER B. E. Radioautographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med. 1959 Jul;101(3):557–560. doi: 10.3181/00379727-101-25014. [DOI] [PubMed] [Google Scholar]
  16. Sidman R. L., Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973 Nov 9;62(1):1–35. doi: 10.1016/0006-8993(73)90617-3. [DOI] [PubMed] [Google Scholar]
  17. Smart I. H. A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J Anat. 1976 Feb;121(Pt 1):71–84. [PMC free article] [PubMed] [Google Scholar]
  18. Smart I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat. 1973 Oct;116(Pt 1):67–91. [PMC free article] [PubMed] [Google Scholar]
  19. Smart I. H. Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse. J Anat. 1972 Apr;111(Pt 3):365–380. [PMC free article] [PubMed] [Google Scholar]
  20. Smart I. H., Smart M. Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J Anat. 1982 Mar;134(Pt 2):273–298. [PMC free article] [PubMed] [Google Scholar]
  21. Smart I. H., Smart M. The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatial mice injected with [3H]thymidine on the eleventh and twelfth days post-conception. J Anat. 1977 Apr;123(Pt 2):515–525. [PMC free article] [PubMed] [Google Scholar]
  22. Sturrock R. R. A quantitative lifespan study of changes in cell number, cell division and cell death in various regions of the mouse forebrain. Neuropathol Appl Neurobiol. 1979 Nov-Dec;5(6):433–456. doi: 10.1111/j.1365-2990.1979.tb00642.x. [DOI] [PubMed] [Google Scholar]
  23. Todd P. H., Smart I. H. Growth patterns in the lateral wall of the mouse telencephalon: III. Studies of the chronologically ordered column hypothesis of isocortical histogenesis. J Anat. 1982 Jun;134(Pt 4):633–642. [PMC free article] [PubMed] [Google Scholar]
  24. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol. 1969 Oct;25(1):1–47. doi: 10.1016/s0022-5193(69)80016-0. [DOI] [PubMed] [Google Scholar]
  25. von Waechter R., Jaensch B. Generation times of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res. 1972 Nov 13;46:235–250. doi: 10.1016/0006-8993(72)90018-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES