Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 May;140(2):205–210. doi: 10.1042/bj1400205

Glutamate and aspartate transport in rat brain mitochondria

M D Brand 1, J B Chappell 1
PMCID: PMC1167992  PMID: 4375961

Abstract

1. Rat brain mitochondria did not swell in iso-osmotic solutions of ammonium or potassium (plus valinomycin) glutamate or aspartate, with or without addition of uncouplers. 2. Glutamate was able to reduce intramitochondrial NAD(P)+; aspartate was able to cause partial re-oxidation. 3. These effects were inhibited by threo-hydroxy-aspartate in whole but not in lysed mitochondria. 4. The existence of a `malate–aspartate shuttle' for the oxidation of extramitochondrial NADH was demonstrated. This shuttle requires the net exchange of glutamate for aspartate across the mitochondrial membrane. 5. Extramitochondrial glutamate did not inhibit intramitochondrial glutaminase under conditions in which the inhibition in lysed mitochondria was virtually complete. 6. The glutaminase activity of these mitochondria was not energy-dependent. 7. We conclude that these mitochondria do not possess a glutamate–hydroxyl antiporter similar to that of liver mitochondria nor a glutamate–glutamine antiporter similar to that of pig kidney mitochondria, but that they do possess a glutamate–aspartate antiporter.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Chappell J. B., Robinson B. H. Penetration of the mitochondrial membrane by glutamate and aspartate. Biochem Biophys Res Commun. 1967 Oct 11;29(1):148–152. doi: 10.1016/0006-291x(67)90556-6. [DOI] [PubMed] [Google Scholar]
  2. BRUNNGRABER E. G., AGUILAR V., OCCOMY W. G. The intracellular distribution of glycolytic and tricarboxylic acid cycle enzymes in rat brain mitochondrial preparations. J Neurochem. 1963 Jun;10:433–438. doi: 10.1111/j.1471-4159.1963.tb13671.x. [DOI] [PubMed] [Google Scholar]
  3. Berl S., Clarke D. D., Nicklas W. J. Compartmentation of citric acid cycle metabolism in brain: effect of aminooxyacetic acid, ouabain and Ca2+ on the labelling of glutamate, glutamine, aspartate and gaba by [1-14C]acetate, [U-14C]glutamate and [U-14C]asparate. J Neurochem. 1970 Jul;17(7):999–1007. doi: 10.1111/j.1471-4159.1970.tb02253.x. [DOI] [PubMed] [Google Scholar]
  4. Berl S., Nicklas W. J., Clarke D. D. Compartmentation of citric acid cycle metabolism in brain: labelling of glutamate, glutamine, aspartate and gaba by several radioactive tracer metabolites. J Neurochem. 1970 Jul;17(7):1009–1015. doi: 10.1111/j.1471-4159.1970.tb02254.x. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Chappell J. B. Permeability of mitochondria from rat brain and rat liver to GABA. J Neurochem. 1974 Jan;22(1):47–51. doi: 10.1111/j.1471-4159.1974.tb12177.x. [DOI] [PubMed] [Google Scholar]
  6. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  7. Cheng S. C., Nakamura R. Metabolism related to the tricarboxylic acid cycle in rat brain slices. Observations on CO 2 fixation and metabolic compartmentation. Brain Res. 1972 Mar 24;38(2):355–370. doi: 10.1016/0006-8993(72)90718-4. [DOI] [PubMed] [Google Scholar]
  8. Clark J. B., Nicklas W. J. The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem. 1970 Sep 25;245(18):4724–4731. [PubMed] [Google Scholar]
  9. Crompton M., Chappell J. B. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem J. 1973 Jan;132(1):35–46. doi: 10.1042/bj1320035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halling P. J., Brand M. D., Chappell J. B. Permeability of mitochondria to neutral amino acids. FEBS Lett. 1973 Aug 15;34(2):169–171. doi: 10.1016/0014-5793(73)80785-9. [DOI] [PubMed] [Google Scholar]
  11. Katunuma N., Huzino A., Tomino I. Organ specific control of glutamine metabolism. Adv Enzyme Regul. 1967;5:55–69. doi: 10.1016/0065-2571(67)90008-8. [DOI] [PubMed] [Google Scholar]
  12. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  13. Miller A. L., Hawkins R. A., Veech R. L. The mitochondrial redox state of rat brain. J Neurochem. 1973 May;20(5):1393–1400. doi: 10.1111/j.1471-4159.1973.tb00251.x. [DOI] [PubMed] [Google Scholar]
  14. SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
  15. Simon G., Cohen M. M., Berry J. F. Conversion of glutamate into aspartate in guinea-pig cerebral-cortex slices. Biochem J. 1968 Mar;107(1):109–111. doi: 10.1042/bj1070109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Simon G., Drori J. B., Cohen M. M. Mechanism of conversion of aspartate into glutamate in cerebral-cortex slices. Biochem J. 1967 Jan;102(1):153–162. doi: 10.1042/bj1020153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van den Berg C. J., Garfinkel D. A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J. 1971 Jun;123(2):211–218. doi: 10.1042/bj1230211. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES