Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Jun;140(3):383–393. doi: 10.1042/bj1400383

Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate

M Reid 1, L E Gibb 1, A A Eddy 1
PMCID: PMC1168015  PMID: 4141255

Abstract

1. Preparations of mouse ascites-tumour cells depleted of ATP and Na+ ions accumulated l-methionine, in the presence of cyanide and deoxyglucose, from a 1mm solution containing 80mequiv. of Na+/l and about 5mequiv. of K+/l. Valinomycin increased, from about 4 to 16, the maximum value of the ratio of the cellular to extracellular concentrations of methionine formed under these conditions without markedly affecting the distributions of Na+ and of K+. Similar observations were made with 2-aminoisobutyrate, glycine and l-leucine. Increasing the extracellular concentration of K+ progressively decreased the accumulation of methionine in the presence of valinomycin. Over the physiological range of ionic gradients, the system behaved as though the absorption of methionine with Na+ was closely coupled to the electrogenic efflux of K+ through the ionophore. The process was insensitive to ouabain and so the sodium pump was probably not involved. 2. The amount of methionine accumulated during energy metabolism was similar to the optimal accumulation in the presence of valinomycin when ATP was lacking. It was also similarly affected by increasing the methionine concentration. 3. A mixture of nigericin and tetrachlorosalicylanilide mimicked the action of valinomycin. The anilide derivative inhibited the absorption of 2-aminoisobutyrate in the presence of valinomycin, but not in its absence. 4. Gramicidin inhibited methionine absorption and caused the preparations to absorb Na+ and lose K+. 5. The observations appear to verify the principle underlying the gradient hypothesis by showing that the tumour cells can efficiently couple the electrochemical gradient of Na+ to the amino acid gradient.

Full text

PDF
383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTNER J., HEINZ E. DIE WIRKUNG VON G-STROPHANTIN AUF DEN GLYZINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:392–400. doi: 10.1016/0006-3002(63)91383-0. [DOI] [PubMed] [Google Scholar]
  2. Colombini M., Johnstone R. M. Preparation and properties of the (Na+ + K+)-ATPase of plasma membranes from Ehrlich ascites cells. Biochim Biophys Acta. 1973 Sep 27;323(1):69–86. doi: 10.1016/0005-2736(73)90432-x. [DOI] [PubMed] [Google Scholar]
  3. Cotterrell D., Whittam R. The influence of the chloride gradient across red cell membranes on sodium and potassium movements. J Physiol. 1971 May;214(3):509–536. doi: 10.1113/jphysiol.1971.sp009446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eddy A. A. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Biochem J. 1968 Jun;108(2):195–206. doi: 10.1042/bj1080195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eddy A. A., Mulcahy M. F., Thomson P. J. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Biochem J. 1967 Jun;103(3):863–876. doi: 10.1042/bj1030863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eddy A. A. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem J. 1968 Jul;108(3):489–498. doi: 10.1042/bj1080489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forte J. G., Forte T. M., Heinz E. Isolation of plasma membranes from Ehrlich ascites tumor cells. Influence of amino acids on (Na++K+)-ATPase and K+-stimulated phosphatase. Biochim Biophys Acta. 1973 Apr 16;298(4):827–841. doi: 10.1016/0005-2736(73)90387-8. [DOI] [PubMed] [Google Scholar]
  8. Geck P., Heinz E., Pfeiffer B. The degree and the efficiency of coupling between the influxes of Na + and -aminoisobutyrate in Ehrlich cells. Biochim Biophys Acta. 1972 Nov 2;288(2):486–491. doi: 10.1016/0005-2736(72)90272-6. [DOI] [PubMed] [Google Scholar]
  9. Gibb L. E., Eddy A. A. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients. Biochem J. 1972 Oct;129(4):979–981. doi: 10.1042/bj1290979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glynn I. M. Involvement of a membrane potential in the synthesis of ATP by mitochondria. Nature. 1967 Dec 30;216(5122):1318–1319. doi: 10.1038/2161318a0. [DOI] [PubMed] [Google Scholar]
  11. Haest C. W., de Gier J., den Kamp JA O. P., Bartels P., van Deenen L. L. Chages in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta. 1972 Mar 17;255(3):720–733. doi: 10.1016/0005-2736(72)90385-9. [DOI] [PubMed] [Google Scholar]
  12. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  13. Henderson P. J. Ion transport by energy-conserving biological membranes. Annu Rev Microbiol. 1971;25:393–428. doi: 10.1146/annurev.mi.25.100171.002141. [DOI] [PubMed] [Google Scholar]
  14. Henderson P. J., McGivan J. D., Chappell J. B. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J. 1969 Feb;111(4):521–535. doi: 10.1042/bj1110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnstone R. M. Glycine accumulation in absence of Na+ and K+ gradients in Ehrlich ascites cells: shortfall of the potential energy from the ion gradients for glycine accumulation. Biochim Biophys Acta. 1972 Sep 1;282(1):366–373. doi: 10.1016/0005-2736(72)90341-0. [DOI] [PubMed] [Google Scholar]
  16. Johnstone R. M., Scholefield P. G. Amino acid transport in tumor cells. Adv Cancer Res. 1965;9:143–226. doi: 10.1016/s0065-230x(08)60447-9. [DOI] [PubMed] [Google Scholar]
  17. Kimmich G. A. Coupling between Na+ and sugar transport in small intestine. Biochim Biophys Acta. 1973 Apr 3;300(1):31–78. doi: 10.1016/0304-4157(73)90011-7. [DOI] [PubMed] [Google Scholar]
  18. Lamb J. F., MacKinnon M. G. The membrane potential and permeabilities of the L cell membrane to Na, K and chloride. J Physiol. 1971 Mar;213(3):683–689. doi: 10.1113/jphysiol.1971.sp009408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leung J., Eisenberg R. S. The effects of the antibiotics gramicidin A, amphotericin B, and nystatin on the electrical properties of frog skeletal muscle. Biochim Biophys Acta. 1973 Mar 29;298(3):718–723. doi: 10.1016/0005-2736(73)90088-6. [DOI] [PubMed] [Google Scholar]
  20. Morville M., Reid M., Eddy A. A. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate. Biochem J. 1973 May;134(1):11–26. doi: 10.1042/bj1340011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okada Y., Ogawa M., Aoki N., Izutsu K. The effect of K + on the membrane potential in HeLa cells. Biochim Biophys Acta. 1973 Jan 2;291(1):116–126. doi: 10.1016/0005-2736(73)90066-7. [DOI] [PubMed] [Google Scholar]
  22. Potashner S. J., Johnstone R. M. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells. Biochim Biophys Acta. 1971 Mar 9;233(1):91–103. doi: 10.1016/0005-2736(71)90361-0. [DOI] [PubMed] [Google Scholar]
  23. Reid M., Eddy A. A. Apparent metabolic regulation of the coupling between the potassium ion gradient and methionine transport in mouse ascites-tumour cells. Biochem J. 1971 Oct;124(5):951–952. doi: 10.1042/bj1240951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ronquist G., Christensen H. N. Amino acid stimulation of alkali-metal-independent ATP cleavage by an Ehrlich cell membrane preparation. Biochim Biophys Acta. 1973 Oct 11;323(2):337–341. doi: 10.1016/0005-2736(73)90157-0. [DOI] [PubMed] [Google Scholar]
  25. Scarpa A., Cecchetto A., Azzone G. F. The mechanism of anion translocation and pH equilibration in erythrocytes. Biochim Biophys Acta. 1970;219(1):179–188. doi: 10.1016/0005-2736(70)90073-8. [DOI] [PubMed] [Google Scholar]
  26. Schafer J. A., Heinz E. The effect of reversal on Na + and K + electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim Biophys Acta. 1971 Oct 12;249(1):15–33. doi: 10.1016/0005-2736(71)90079-4. [DOI] [PubMed] [Google Scholar]
  27. Schafer J. A., Jacquez J. A. Change in Na+ uptake during amino acid transport. Biochim Biophys Acta. 1967;135(5):1081–1083. doi: 10.1016/0005-2736(67)90083-1. [DOI] [PubMed] [Google Scholar]
  28. Terry P. M., Vidaver G. A. The effect of gramicidin on sodium-dependent accumulation of glycine by pigeon red cells: a test of the cation gradient hypothesis. Biochim Biophys Acta. 1973 Oct 25;323(3):441–455. doi: 10.1016/0005-2736(73)90189-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES