Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Jun;140(3):539–545. doi: 10.1042/bj1400539

Compartmentation of free amino acids for protein synthesis in rat liver

Judith Airhart 1, Alda Vidrich 1, Edward A Khairallah 1
PMCID: PMC1168033  PMID: 4447629

Abstract

The concept that a general intracellular pool serves as the sole precursor of amino acids for protein biosynthesis has been vigorously debated in recent years. To help resolve this controversy, we followed the distribution of intraperitoneally administered [3H]valine in the tRNA and the extracellular and intracellular compartments of rat liver. The specific radioactivity of the valine released from isolated tRNA was 2–3 times higher than that of intracellular valine, suggesting that the intracellular pool cannot be the sole precursor of amino acids used for charging tRNA. In addition, the specific radioactivity of the tRNA was only half that of the extracellular valine. Therefore it is unlikely that the valyl-tRNA is charged exclusively with amino acids derived from the extracellular pool. A model is proposed which stipulates that both extracellular and intracellular amino acids contribute to a restricted compartment that funnels amino acids towards protein biosynthesis.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airhart J., Sibiga S., Sanders H., Khairallah E. A. An ultramicro method for quantitation of amino acids in biological fluids. Anal Biochem. 1973 May;53(1):132–140. doi: 10.1016/0003-2697(73)90414-4. [DOI] [PubMed] [Google Scholar]
  2. Allen R. E., Raines P. L., Regen D. M. Regulatory significance of transfer RNA charging levels. I. Measurements of charging levels in livers of chow-fed rats, fasting rats, and rats fed balanced or imbalanced mixtures of amino acids. Biochim Biophys Acta. 1969 Oct 22;190(2):323–336. doi: 10.1016/0005-2787(69)90083-5. [DOI] [PubMed] [Google Scholar]
  3. Alpers D. H., Thier S. O. Role of the free amino acid pool of the intestine in protein synthesis. Biochim Biophys Acta. 1972 Apr 12;262(4):535–545. doi: 10.1016/0005-2787(72)90497-2. [DOI] [PubMed] [Google Scholar]
  4. Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
  5. Cohn J. N., Pinkerson A. L. Intrahepatic distribution of hepatic arterial and portal venous flows in the dog. Am J Physiol. 1969 Feb;216(2):285–289. doi: 10.1152/ajplegacy.1969.216.2.285. [DOI] [PubMed] [Google Scholar]
  6. Davey P. J., Manchester K. L. Isolation of labelled aminoacyl transfer RNA from muscle. Studies of the entry of labelled amino acids into acyl transfer RNA linkage in situ and its control by insulin. Biochim Biophys Acta. 1969 May 20;182(1):85–97. doi: 10.1016/0005-2787(69)90523-1. [DOI] [PubMed] [Google Scholar]
  7. Elwyn D. H., Parikh H. C., Shoemaker W. C. Amino acid movements between gut, liver, and periphery in unanesthetized dogs. Am J Physiol. 1968 Nov;215(5):1260–1275. doi: 10.1152/ajplegacy.1968.215.5.1260. [DOI] [PubMed] [Google Scholar]
  8. Fern E. B., Garlick P. J. The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis. Biochem J. 1973 Aug;134(4):1127–1130. doi: 10.1042/bj1341127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gan J. C., Jeffay H. The kinetics of transfer of plasma amino acids to tissues, and the turnover rates of liver and muscle proteins. Biochim Biophys Acta. 1971 Oct;252(1):125–135. doi: 10.1016/0304-4165(71)90100-0. [DOI] [PubMed] [Google Scholar]
  10. Goldberg A. L. A role of aminoacyl-tRNA in the regulation of protein breakdown in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Feb;68(2):362–366. doi: 10.1073/pnas.68.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenway C. V., Stark R. D. Hepatic vascular bed. Physiol Rev. 1971 Jan;51(1):23–65. doi: 10.1152/physrev.1971.51.1.23. [DOI] [PubMed] [Google Scholar]
  12. HENDLER R. W. A model for protein synthesis. Nature. 1962 Mar 3;193:821–823. doi: 10.1038/193821a0. [DOI] [PubMed] [Google Scholar]
  13. HENDLER R. W. Possible involvement of lipids in protein synthesis. Science. 1958 Jul 18;128(3316):143–144. doi: 10.1126/science.128.3316.143. [DOI] [PubMed] [Google Scholar]
  14. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henshaw E. C., Hirsch C. A., Morton B. E., Hiatt H. H. Control of protein synthesis in mammalian tissues through changes in ribosome activity. J Biol Chem. 1971 Jan 25;246(2):436–446. [PubMed] [Google Scholar]
  16. Hershko A., Mamont P., Shields R., Tomkins G. M. "Pleiotypic response". Nat New Biol. 1971 Aug;232(33):206–211. [PubMed] [Google Scholar]
  17. Hider R. C., Fern E. B., London D. R. Identification in skeletal muscle of a distinct extracellular pool of amino acids, and its role in protein synthesis. Biochem J. 1971 Mar;121(5):817–827. doi: 10.1042/bj1210817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hider R. C., Fern E. B., London D. R. Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats. Biochem J. 1969 Sep;114(2):171–178. doi: 10.1042/bj1140171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jefferson L. S., Koehler J. O., Morgan H. E. Effect of insulin on protein synthesis in skeletal muscle of an isolated perfused preparation of rat hemicorpus. Proc Natl Acad Sci U S A. 1972 Apr;69(4):816–820. doi: 10.1073/pnas.69.4.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KIPNIS D. M., REISS E., HELMREICH E. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochim Biophys Acta. 1961 Aug 19;51:519–524. doi: 10.1016/0006-3002(61)90608-4. [DOI] [PubMed] [Google Scholar]
  21. LOFTFIELD R. B., HARRIS A. Participation of free amino acids in protein synthesis. J Biol Chem. 1956 Mar;219(1):151–159. [PubMed] [Google Scholar]
  22. Li J. B., Fulks R. M., Goldberg A. L. Evidence that the intracellular pool of tyrosine serves as precursor for protein synthesis in muscle. J Biol Chem. 1973 Oct 25;248(20):7272–7275. [PubMed] [Google Scholar]
  23. MANCHESTER K. L., WOOL I. G. INSULIN AND INCORPORATION OF AMINO ACIDS INTO PROTEIN OF MUSCLE. 1. ACCUMULATION AND INCORPORATION STUDIES WITH THE PERFUSED RAT HEART. Biochem J. 1963 Nov;89:202–209. doi: 10.1042/bj0890202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MORGAN H. E., HENDERSON M. J., REGEN D. M., PARK C. R. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 1961 Feb;236:253–261. [PubMed] [Google Scholar]
  25. Morgan E. H., Peters T., Jr The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis. J Biol Chem. 1971 Jun 10;246(11):3500–3507. [PubMed] [Google Scholar]
  26. Morgan H. E., Earl D. C., Broadus A., Wolpert E. B., Giger K. E., Jefferson L. S. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem. 1971 Apr 10;246(7):2152–2162. [PubMed] [Google Scholar]
  27. Mortimore G. E., Mondon C. E. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem. 1970 May 10;245(9):2375–2383. [PubMed] [Google Scholar]
  28. Mortimore G. E., Woodside K. H., Henry J. E. Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J Biol Chem. 1972 May 10;247(9):2776–2784. [PubMed] [Google Scholar]
  29. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  31. Portugal F. H., Elwyn D. H., Jeffay H. Free lysine compartments in rat liver cells. Biochim Biophys Acta. 1970 Aug 14;215(2):339–347. doi: 10.1016/0304-4165(70)90033-4. [DOI] [PubMed] [Google Scholar]
  32. ROSENBERG L. E., BERMAN M., SEGAL S. Studies of the kinetics of amino acid transport, incorporation into portein and oxidation in kidney-cortex slices. Biochim Biophys Acta. 1963 Jun 4;71:664–675. doi: 10.1016/0006-3002(63)91140-5. [DOI] [PubMed] [Google Scholar]
  33. Reiser S., Christiansen P. A. Formation of a complex between valine and intestinal mucosal lipid; its possible role in valine absorption. J Lipid Res. 1968 Sep;9(5):606–612. [PubMed] [Google Scholar]
  34. SCHLOERB P. R., GRANTHAM J. J. INTRACELLULAR PH MEASUREMENT WITH TRITIATED WATER, CARBON-14 LABELED 5,5-DIMETHYL-2, 4-OXAZOLIDINEDIONE, AND CHLORIDE-36. J Lab Clin Med. 1965 Apr;65:669–676. [PubMed] [Google Scholar]
  35. SWICK R. W. Measurement of protein turnover in rat liver. J Biol Chem. 1958 Apr;231(2):751–764. [PubMed] [Google Scholar]
  36. Sauner M. T., Lévy M. Study of the transfer of phospholipids from the endoplasmic reticulum to the outer and inner mitochondrial membranes. J Lipid Res. 1971 Jan;12(1):71–75. [PubMed] [Google Scholar]
  37. Smulson M. E., Thomas J. Ribonucleic acid biosynthesis of human cells during amino acid deprivation. J Biol Chem. 1969 Oct 10;244(19):5309–5312. [PubMed] [Google Scholar]
  38. Stephen J. M., Waterlow J. C. Use of carbon-14-labelled arginine to measure the catabolic rate of serum and liver proteins and the extent of amino-acid recycling. Nature. 1966 Aug 27;211(5052):978–980. doi: 10.1038/211978a0. [DOI] [PubMed] [Google Scholar]
  39. Tidwell T., Bruce B. J., Griffin A. C. Aminoacyl synthetases and isoaccepting transfer RNA's from normal and regenerating rat liver. Cancer Res. 1972 May;32(5):1002–1008. [PubMed] [Google Scholar]
  40. Tscherne J. S., Weinstein I. B., Lanks K. W., Gersten N. B., Cantor C. R. Phenylalanyl transfer ribonucleic acid synthetase activity associated with rat liver ribosomes and microsomes. Biochemistry. 1973 Sep 25;12(20):3859–3865. doi: 10.1021/bi00744a010. [DOI] [PubMed] [Google Scholar]
  41. Van Venrooij W. J., Poort C., Kramer M. F., Jansen M. T. Relationship between extracellular amino acids and protein synthesis in vitro in the rat pancreas. Eur J Biochem. 1972 Nov 7;30(3):427–433. doi: 10.1111/j.1432-1033.1972.tb02114.x. [DOI] [PubMed] [Google Scholar]
  42. Vennegoor C. J., Stols A. L., Bloemendal H. More evidence for a particle character of aminoacyl-transfer RNA synthetases isolated from rat liver. J Mol Biol. 1972 Mar 28;65(2):375–378. doi: 10.1016/0022-2836(72)90289-6. [DOI] [PubMed] [Google Scholar]
  43. Waterlow J. C., Stephen J. M. The effect of low protein diets on the turn-over rates of serums, liver and muscle proteins in the rat, measured by continuous infusion of L-[14C]lysine. Clin Sci. 1968 Oct;35(2):287–305. [PubMed] [Google Scholar]
  44. Woodside K. H., Mortimore G. E. Suppression of protein turnover by amino acids in the perfused rat liver. J Biol Chem. 1972 Oct 25;247(20):6474–6481. [PubMed] [Google Scholar]
  45. Zilversmit D. B. Exchange of phospholipid classes between liver microsomes and plasma: comparison of rat, rabbit, and guinea pig. J Lipid Res. 1971 Jan;12(1):36–42. [PubMed] [Google Scholar]
  46. van Venrooij W. J., Kuijper-Lenstra A. H., Kramer M. F. Interrelationship between amino acid pools and protein synthesis in the rat submandibular gland. Biochim Biophys Acta. 1973 Jun 23;312(2):392–398. doi: 10.1016/0005-2787(73)90383-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES