Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Jul;141(1):27–34. doi: 10.1042/bj1410027

Changes in the number of binding sites for ribonucleic acid polymerase in chromatin of WI-38 fibroblasts stimulated to proliferate

Bridget T Hill 1, Renato Baserga 1
PMCID: PMC1168045  PMID: 4616682

Abstract

1. When WI-38 human diploid fibroblasts form confluent monolayers, DNA synthesis and cell division almost completely cease. A change of medium causes these density-inhibited cells to proliferate and within 1h after the application of the stimulus there is an increase in template activity of the chromatin isolated from stimulated cells. 2. The number of binding sites for Escherichia coli RNA polymerase was determined on chromatin from WI-38 cells by two different methods, i.e. incorporation of [3H]UTP into RNA in the absence of reinitiation, and incorporation of [γ-32P]GTP into chain termini. 3. Both methods indicate that the capacity of chromatin to bind E. coli RNA polymerase is increased in WI-38 cells stimulated to proliferate. 4. The increase in the number of binding sites for E. coli RNA polymerase parallels the increase in chromatin template activity and suggests that the latter reflects an increase in the number of initiation sites, rather than an increase in the rate of transcription.

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axel R., Cedar H., Felsenfeld G. Synthesis of globin ribonucleic acid from duck-reticulocyte chromatin in vitro. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2029–2032. doi: 10.1073/pnas.70.7.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bannai S., Terayama H. Template activity of chromatins isolated from regenerating rat liver. J Biochem. 1969 Sep;66(3):289–295. doi: 10.1093/oxfordjournals.jbchem.a129147. [DOI] [PubMed] [Google Scholar]
  3. Barker K. L., Warren J. C. Template capacity of uterine chromatin: control by estradiol. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1298–1302. doi: 10.1073/pnas.56.4.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butterworth P. H., Cox R. F., Chesterton C. J. Transcription of mammalian chromatin by mammalian DNA-dependent RNA polymerases. Eur J Biochem. 1971 Nov 11;23(2):229–241. doi: 10.1111/j.1432-1033.1971.tb01613.x. [DOI] [PubMed] [Google Scholar]
  5. CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cedar H., Felsenfeld G. Transcription of chromatin in vitro. J Mol Biol. 1973 Jun 25;77(2):237–254. doi: 10.1016/0022-2836(73)90334-3. [DOI] [PubMed] [Google Scholar]
  7. Couch R. M., Anderson K. M. Rat ventral prostate chromatin. Effect of androgens on its chemical composition, physical properties, and template activity. Biochemistry. 1973 Jul 31;12(16):3114–3121. doi: 10.1021/bi00740a027. [DOI] [PubMed] [Google Scholar]
  8. Cox R. F., Haines M. E., Carey N. H. Modification of the template capacity of chick-oviduct chromatin for form-B RNA polymerase by estradiol. Eur J Biochem. 1973 Feb 1;32(3):513–524. doi: 10.1111/j.1432-1033.1973.tb02636.x. [DOI] [PubMed] [Google Scholar]
  9. Duerksen J. D., McCarthy B. J. Distribution of deoxyribonucleic acid sequences in fractionated chromatin. Biochemistry. 1971 Apr 13;10(8):1471–1478. doi: 10.1021/bi00784a031. [DOI] [PubMed] [Google Scholar]
  10. Farber J. L., Rovera G., Baserga R. Effect of homologous RNA polymerase on the increase in chromatin template activity of stimulated fibroblasts. Biochem Biophys Res Commun. 1972 Oct 17;49(2):558–562. doi: 10.1016/0006-291x(72)90447-0. [DOI] [PubMed] [Google Scholar]
  11. Farber J., Rovera G., Baserga R. Template activity of chromatin during stimulation of cellular proliferation in human diploid fibroblasts. Biochem J. 1971 Apr;122(2):189–195. doi: 10.1042/bj1220189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gilmour R. S., Paul J. Role of non-histone components in determining organ specificity of rabbit chromatins. FEBS Lett. 1970 Aug 17;9(4):242–244. doi: 10.1016/0014-5793(70)80366-0. [DOI] [PubMed] [Google Scholar]
  14. Hirschhorn R., Troll W., Brittinger G., Weissmann G. Template activity of nuclei from stimulated lymphocytes. Nature. 1969 Jun 28;222(5200):1247–1250. doi: 10.1038/2221247a0. [DOI] [PubMed] [Google Scholar]
  15. Hyman R. W., Davidson N. Kinetics of the in vitro inhibition of transcription by actinomycin. J Mol Biol. 1970 Jun 14;50(2):421–438. doi: 10.1016/0022-2836(70)90202-0. [DOI] [PubMed] [Google Scholar]
  16. Jergil B., Dixon G. H. Protamine kinase from rainbow trout testis. Partial purification and characterization. J Biol Chem. 1970 Jan 25;245(2):425–434. [PubMed] [Google Scholar]
  17. Keshgegian A. A., Furth J. J. Comparison of transcription of chromatin by calf thymus and E. coli RNA polymerases. Biochem Biophys Res Commun. 1972 Aug 21;48(4):757–763. doi: 10.1016/0006-291x(72)90671-7. [DOI] [PubMed] [Google Scholar]
  18. Koslov Y. V., Georgiev G. P. Mechanism of inhibitory action of histones on DNA template activity in vitro. Nature. 1970 Oct 17;228(5268):245–247. doi: 10.1038/228245a0. [DOI] [PubMed] [Google Scholar]
  19. Maitra U., Hurwitz H. The role of DNA in RNA synthesis, IX. Nucleoside triphosphate termini in RNA polymerase products. Proc Natl Acad Sci U S A. 1965 Sep;54(3):815–822. doi: 10.1073/pnas.54.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mayfield J. E., Bonner J. A partial sequence of nuclear events in regenerating rat liver (gene regulation-chromosomal RNA). Proc Natl Acad Sci U S A. 1972 Jan;69(1):7–10. doi: 10.1073/pnas.69.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Novi A. M., Baserga R. Changes in chromatin template activity and their relationship to DNA synthesis in mouse parotid glands stimulated by isoproterenol. J Cell Biol. 1972 Dec;55(3):554–562. doi: 10.1083/jcb.55.3.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  23. Paul J., Gilmour R. S. Organ-specific restriction of transcription in mammalian chromatin. J Mol Biol. 1968 Jul 14;34(2):305–316. doi: 10.1016/0022-2836(68)90255-6. [DOI] [PubMed] [Google Scholar]
  24. Rhode S. L., 3rd, Ellem K. A. Control of nucleic acid synthesis in human diploid cells undergoing contact inhibition. Exp Cell Res. 1968 Oct;53(1):184–204. doi: 10.1016/0014-4827(68)90366-2. [DOI] [PubMed] [Google Scholar]
  25. Rovera G., Baserga R. Early changes in the synthesis of acidic nuclear proteins in human diploid fibroblasts stimulated to synthesize DNA by changing the medium. J Cell Physiol. 1971 Apr;77(2):201–211. doi: 10.1002/jcp.1040770211. [DOI] [PubMed] [Google Scholar]
  26. Rovera G., Baserga R. Effect of nutritional changes on chromatin template activity and non-histone chromosomal protein synthesis in WI-38 and 3T6 cells. Exp Cell Res. 1973 Mar 30;78(1):118–126. doi: 10.1016/0014-4827(73)90045-1. [DOI] [PubMed] [Google Scholar]
  27. Rovera G., Farber J., Baserga R. Gene activation in WI-38 fibroblasts stimulated to proliferate: requirement for protein synthesis. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1725–1729. doi: 10.1073/pnas.68.8.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. STOKER M. Characteristics of normal and transformed clones arising from BHK21 cells exposed to polyoma virus. Virology. 1962 Dec;18:649–651. doi: 10.1016/0042-6822(62)90071-5. [DOI] [PubMed] [Google Scholar]
  29. Temin H. M. Stimulation by serum of multiplication of stationary chicken cells. J Cell Physiol. 1971 Oct;78(2):161–170. doi: 10.1002/jcp.1040780202. [DOI] [PubMed] [Google Scholar]
  30. Teng C. S., Hamilton T. H. The role of chromatin in estrogen action in the uterus, I. The control of template capacity and chemical composition and the binding of H3-estradiol-17 beta. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1410–1417. doi: 10.1073/pnas.60.4.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thaler M. M., Willee C. A. Template activities in normal, regenerating, and developing rat liver chromatin. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2055–2062. doi: 10.1073/pnas.58.5.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  33. Tsai M. J., Saunders G. F. Transcription of chromatin by human RNA polymerase. Biochem Biophys Res Commun. 1973 Apr 2;51(3):756–765. doi: 10.1016/0006-291x(73)91380-6. [DOI] [PubMed] [Google Scholar]
  34. Wiebel F., Baserga R. Early alterations in amino acid pools and protein synthesis of diploid fibroblasts stimulated to synthesize DNA by addition of serum. J Cell Physiol. 1969 Oct;74(2):191–202. doi: 10.1002/jcp.1040740211. [DOI] [PubMed] [Google Scholar]
  35. Wilson S. H., Quincey R. V. Quantitative determination of low molecular weight ribonucleic acids in rat liver microsomes. J Biol Chem. 1969 Mar 10;244(5):1092–1096. [PubMed] [Google Scholar]
  36. Yoshikura H., Hirokawa Y., Yamada M. Synchronized cell division induced by medium change. Exp Cell Res. 1967 Oct;48(1):226–228. doi: 10.1016/0014-4827(67)90309-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES