Abstract
Partly purified guinea-pig brain pyruvate kinase is not activated by fructose 1,6-diphosphate and gives hyperbolic substrate-saturation curves with phosphoenolpyruvate. It is therefore different from the L-type pyruvate kinase of mammalian liver. Inhibition by MgATP2− was competitive for MgADP− but not for phosphoenolpyruvate, and the enzyme is therefore different from the M-type pyruvate kinase, which is said to be competitively inhibited by MgATP2− with respect to both substrates. The Ki(MgATP2−) value of approx. 8mm for the brain enzyme is higher than the values (about 2mm) reported for the muscle enzyme. Stimulation of enzymic activity was observed at low (1–2mm) concentrations of MgATP2−. Substrate kinetic constants were Km (MgADP−)=0.47mm, Km (phosphoenolpyruvate)=0.08mm. Free Mg2+ at very high concentrations (over 10mm) was inhibitory (Ki=20–32mm). Neither ADP3− nor 5′-AMP2− inhibited the activity. The brain enzyme was concluded to be different from both the M-type and the L-type of other mammalian organs such as muscle and liver.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ainsworth S., MacFarlane N. A kinetic study of rabbit muscle pyruvate kinase. Biochem J. 1973 Feb;131(2):223–236. doi: 10.1042/bj1310223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachelard H. S., Goldfarb P. S. Adenine nucleotides and magnesium ions in relation to control of mammalian cerebral-cortex hexokinase. Biochem J. 1969 May;112(5):579–586. doi: 10.1042/bj1120579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachelard H. S., Lewis L. D., Pontén U., Siesjö B. K. Mechanisms activating glycolysis in the brain in arterial hypoxia. J Neurochem. 1974 Mar;22(3):395–401. doi: 10.1111/j.1471-4159.1974.tb07605.x. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. Computer programmes for processing enzyme kinetic data. Nature. 1963 May 4;198:463–465. doi: 10.1038/198463a0. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
- Haeckel R., Hess B., Lauterborn W., Wüster K. H. Purification and allosteric properties of yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1968 May;349(5):699–714. doi: 10.1515/bchm2.1968.349.1.699. [DOI] [PubMed] [Google Scholar]
- Hess B., Haeckel R., Brand K. FDP-activation of yeast pyruvate kinase. Biochem Biophys Res Commun. 1966 Sep 22;24(6):824–831. doi: 10.1016/0006-291x(66)90322-6. [DOI] [PubMed] [Google Scholar]
- Irving M. G., Williams J. F. Kinetic studies on the regulation of rabbit liver pyruvate kinase. Biochem J. 1973 Feb;131(2):287–301. doi: 10.1042/bj1310287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KACHMAR J. F., BOYER P. D. Kinetic analysis of enzyme reactions. II. The potassium activation and calcium inhibition of pyruvic phosphoferase. J Biol Chem. 1953 Feb;200(2):669–682. [PubMed] [Google Scholar]
- Llorente P., Marco R., Sols A. Regulation of liver pyruvate kinase and the phosphoenolpyruvate crossroads. Eur J Biochem. 1970 Mar 1;13(1):45–54. doi: 10.1111/j.1432-1033.1970.tb00897.x. [DOI] [PubMed] [Google Scholar]
- Macfarlane N., Ainsworth S. A kinetic study of Baker's-yeast pyruvate kinase activated by fructose 1,6-diphosphate. Biochem J. 1972 Oct;129(5):1035–1047. doi: 10.1042/bj1291035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McQUATE J. T., UTTER M. F. Equilibrium and kinetic studies of the pyruvic kinase reaction. J Biol Chem. 1959 Aug;234(8):2151–2157. [PubMed] [Google Scholar]
- Middleton M. C., Walker D. G. Comparison of the properties of two forms of pyruvate kinase in rat liver and determination of their separate activities during development. Biochem J. 1972 May;127(4):721–731. doi: 10.1042/bj1270721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholas P. C., Bachelard H. S. The separation, prtial purificatio nd some properties of isoenzymes of aldolase from guinea-pig cerebral cortex. Biochem J. 1969 May;112(5):587–594. doi: 10.1042/bj1120587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'SULLIVAN W. J., PERRIN D. D. THE STABILITY CONSTANTS OF METAL-ADENINE NUCLEOTIDE COMPLEXES. Biochemistry. 1964 Jan;3:18–26. doi: 10.1021/bi00889a005. [DOI] [PubMed] [Google Scholar]
- REYNARD A. M., HASS L. F., JACOBSEN D. D., BOYER P. D. The correlation of reaction kinetics and substrate binding with the mechanism of pyruvate kinase. J Biol Chem. 1961 Aug;236:2277–2283. [PubMed] [Google Scholar]
- Rolleston F. S., Newsholme E. A. Control of glycolysis in cerebral cortex slices. Biochem J. 1967 Aug;104(2):524–533. doi: 10.1042/bj1040524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwark W. S., Singhal R. L., Ling G. M. Metabolic control mechanisms in mammalian systems. Regulation of pyruvate kinase in the rat cerebral cortex. J Neurochem. 1971 Jan;18(1):123–134. doi: 10.1111/j.1471-4159.1971.tb00174.x. [DOI] [PubMed] [Google Scholar]
- Susor W. A., Rutter W. J. Some distinctive properties of pyruvate kinase purified from rat liver. Biochem Biophys Res Commun. 1968 Jan 11;30(1):14–20. doi: 10.1016/0006-291x(68)90705-5. [DOI] [PubMed] [Google Scholar]
- Takagaki G. Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices. J Neurochem. 1968 Sep;15(9):903–916. doi: 10.1111/j.1471-4159.1968.tb11632.x. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Harano Y., Sue F., Morimura H. Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J Biochem. 1967 Jul;62(1):71–91. doi: 10.1093/oxfordjournals.jbchem.a128639. [DOI] [PubMed] [Google Scholar]
