Abstract
dCMP deaminase was partially purified from BHK-21/C13 cells grown in culture. The molecular weight of the enzyme was estimated by gel filtration and gradient centrifugation to be 130000 and 115000 respectively. The enzyme had a pH optimum of 8.4. Its activity versus substrate concentration curve was sigmoid, the substrate concentration at half-maximal velocity being 4.4mm. dCTP activated the deaminase maximally at 40μm, gave a hyperbolic curve for activity versus dCMP concentration and a Km value for dCMP of 0.91mm. dCTP activation required the presence of Mg2+ or Mn2+ ions. dTTP inhibited the deaminase maximally at 15μm; the inhibition required the presence of Mg2+ or Mn2+ ions. The enzyme was very heat-labile but could be markedly stabilized by dCTP at 0.125mm and ethylene glycol at 20% (v/v).
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bürk R. R. One-step growth cycle for BHK21-13 hamster fibroblasts. Exp Cell Res. 1970 Dec;63(2):309–316. doi: 10.1016/0014-4827(70)90218-1. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DULBECCO R., VOGT M. One-step growth curve of Western equine encephalomyelitis virus on chicken embryo cells grown in vitro and analysis of virus yields from single cells. J Exp Med. 1954 Feb;99(2):183–199. doi: 10.1084/jem.99.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englund P. T., Deutscher M. P., Jovin T. M., Kelly R. B., Cozzarelli N. R., Kornberg A. Structural and functional properties of Escherichia coli DNA polymerase. Cold Spring Harb Symp Quant Biol. 1968;33:1–9. doi: 10.1101/sqb.1968.033.01.005. [DOI] [PubMed] [Google Scholar]
- FOGH J., FOGH H. A METHOD FOR DIRECT DEMONSTRATION OF PLEUROPNEUMONIA-LIKE ORGANISMS IN CULTURED CELLS. Proc Soc Exp Biol Med. 1964 Dec;117:899–901. doi: 10.3181/00379727-117-29731. [DOI] [PubMed] [Google Scholar]
- Gelbard A. S., Kim J. H., Perez A. G. Fluctuations in deoxycytidine monophosphate deaminase activity during the cell cycle in synchronous populations of HeLa cells. Biochim Biophys Acta. 1969 Jun 17;182(2):564–566. doi: 10.1016/0005-2787(69)90209-3. [DOI] [PubMed] [Google Scholar]
- Geraci G., Rossi M., Scarano E. Deoxycytidylate aminohydrolase. I. Preparation and properties of the homogeneous enzyme. Biochemistry. 1967 Jan;6(1):183–191. doi: 10.1021/bi00853a030. [DOI] [PubMed] [Google Scholar]
- Goldberg E. Amino acid composition and properties of crystalline lactate dehydrogenase X from mouse testes. J Biol Chem. 1972 Apr 10;247(7):2044–2048. [PubMed] [Google Scholar]
- Hayton G. J., Pearson C. K., Scaife J. R., Keir H. M. Synthesis of deoxyribonucleic acid in BHK-21-C13 cells. Biochem J. 1973 Mar;131(3):499–508. doi: 10.1042/bj1310499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACPHERSON I., STOKER M. Polyoma transformation of hamster cell clones--an investigation of genetic factors affecting cell competence. Virology. 1962 Feb;16:147–151. doi: 10.1016/0042-6822(62)90290-8. [DOI] [PubMed] [Google Scholar]
- MALEY F., MALEY G. F. Nucleotide interconversions. II. Elevation of deoxycytidylate deaminase and thymidylate synthetase in regenerating rat liver. J Biol Chem. 1960 Oct;235:2968–2970. [PubMed] [Google Scholar]
- MALEY F., MALEY G. F. ON THE MECHANISM OF FEEDBACK INHIBITION OF DEOXYCYTIDYLATE DEAMINASE BY DEOXYTHYMIDINE TRIPHOSPHATE. J Biol Chem. 1965 Jul;240:PC3226–PC3227. [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- Maley G. F., Maley F. Active and inactive states of deoxycytidylate deaminase and their relation to subunit structure. J Biol Chem. 1968 Sep 10;243(17):4513–4516. [PubMed] [Google Scholar]
- Maley G. F., Maley F. Regulatory properties and subunit structure of chick embryo deoxycytidylate deaminase. J Biol Chem. 1968 Sep 10;243(17):4506–4512. [PubMed] [Google Scholar]
- RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
- Rossi M., Geraci G., Scarano E. Deoxycytidylate aminohydrolase. 3. Modifications of the substrate sites caused by allosteric effectors. Biochemistry. 1967 Dec;6(12):3640–3645. doi: 10.1021/bi00864a003. [DOI] [PubMed] [Google Scholar]
- Scarano E., Geraci G., Rossi M. Deoxycytidylate aminohydrolase. II. Kinetic properties. The activatory effect of deoxycytidine triphosphate and the inhibitory effect of deoxythymidine triphosphate. Biochemistry. 1967 Jan;6(1):192–201. doi: 10.1021/bi00853a031. [DOI] [PubMed] [Google Scholar]
- Scarano E., Geraci G., Rossi M. Deoxycytidylate aminohydrolase. IV. Stoichiometry of binding of isosteric and allosteric effectors. Biochemistry. 1967 Dec;6(12):3645–3650. doi: 10.1021/bi00864a004. [DOI] [PubMed] [Google Scholar]
- Scarano E., Geraci G., Rossi M. On the regulatory properties of deoxycytidylate aminohydrolase. Biochem Biophys Res Commun. 1964 Jun 15;16(3):239–243. doi: 10.1016/0006-291x(64)90332-8. [DOI] [PubMed] [Google Scholar]
- Sonoda S., Endo H. Stabilization of deoxycytidylate deaminase from mammalian tissues. Biochim Biophys Acta. 1969 Nov 4;191(2):425–429. doi: 10.1016/0005-2744(69)90261-7. [DOI] [PubMed] [Google Scholar]
- Sund H., Weber K., Mölbert E. Dissoziation der Rinderleber-Katalase in ihre Untereinheiten. Eur J Biochem. 1967 Jun;1(4):400–410. doi: 10.1111/j.1432-1033.1967.tb00088.x. [DOI] [PubMed] [Google Scholar]
