Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Aug;141(2):401–406. doi: 10.1042/bj1410401

The nature of the multiple forms of cytoplasmic aspartate aminotransferase from pig and sheep heart

Robert John 1, Richard Jones 1
PMCID: PMC1168092  PMID: 4455213

Abstract

Starch-gel electrophoresis of sheep heart aspartate aminotransferase was carried out over the range pH7.0–8.5. The enzyme separates into three subforms in the same way as the pig heart enzyme. As the pH was increased the distance migrated by each subform increased by the same amount, so that they remained the same distance apart. Titration of the enzyme over the appropriate pH range was used to calculate the difference in charge between the subforms and it was concluded that they differ by one charged group per dimer from their nearest neighbour on the electrophoretogram over the whole pH range studied. It was also shown that the pig-heart α and β subforms differ by almost one charged group per dimer in the range pH5.5–5.7 and that the spacing between the subforms on starch-gel electrophoresis at pH8.0 is the same as that for the sheep enzyme. Since the charge difference between the subforms is maintained over such a wide range of pH, it is concluded that they probably differ from each other in covalent structure, because of the improbability that conformational differences can give rise to such behaviour. The relationship between the subforms and inactive binding of the coenzyme is also examined.

Full text

PDF
401

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRETT R. J., FRIESEN H., ASTWOOD E. B. Characterization of pituitary and peptide hormones by electrophoresis in starch gel. J Biol Chem. 1962 Feb;237:432–439. [PubMed] [Google Scholar]
  2. Banks B. E., Doonan S., Lawrence A. J., Vernon C. A. The molecular weight and other properties of aspartate aminotransferase from pig heart muscle. Eur J Biochem. 1968 Sep 24;5(4):528–539. doi: 10.1111/j.1432-1033.1968.tb00402.x. [DOI] [PubMed] [Google Scholar]
  3. Bertland L. H., Kaplan N. O. Chicken heart soluble aspartate aminotransferase. Purification and properties. Biochemistry. 1968 Jan;7(1):134–142. doi: 10.1021/bi00841a018. [DOI] [PubMed] [Google Scholar]
  4. Birchmeier W., Wilson K. J., Christen P. Cytoplasmic aspartate aminotransferase: syncatalytic sulfhydryl group modification. J Biol Chem. 1973 Mar 10;248(5):1751–1759. [PubMed] [Google Scholar]
  5. Bossa F., Barra D., Carloni M., Fasella P., Riva F., Doonan S., Doonan H. J., Hanford R., Vernon C. A., Walker J. M. The primary structure of aspartate aminotransferase from pig heart muscle. Partial sequences determined by digestion with thermolysin and elastase. Biochem J. 1973 Aug;133(4):805–819. doi: 10.1042/bj1330805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DECKER L. E., RAU E. M. Multiple forms of glutamic-oxalacetic transaminase in tissues. Proc Soc Exp Biol Med. 1963 Jan;112:144–149. doi: 10.3181/00379727-112-27975. [DOI] [PubMed] [Google Scholar]
  7. Delcour J., Papaconstantinou J. Biochemistry of bovine lens proteins. IV. Synthesis and aggregation of -crystallin subunits in differentiating lens cells. J Biol Chem. 1972 May 25;247(10):3289–3295. [PubMed] [Google Scholar]
  8. Fasella P., Turano C. Structure and catalytic role of the functional groups of aspartate aminotransferase. Vitam Horm. 1970;28:157–194. doi: 10.1016/s0083-6729(08)60893-6. [DOI] [PubMed] [Google Scholar]
  9. Flatmark T. On the heterogeneity of beef heart cytochrome c. 3. A kinetic study of the non-enzymic deamidation of the main subfractions (Cy I-Cy 3). Acta Chem Scand. 1966;20(6):1487–1496. doi: 10.3891/acta.chem.scand.20-1487. [DOI] [PubMed] [Google Scholar]
  10. Furbish F. S., Fonda M. L., Metzler D. E. Reaction of apoaspartate aminotransferase with analogs of pyridoxal phosphate. Biochemistry. 1969 Dec;8(12):5169–5180. doi: 10.1021/bi00840a071. [DOI] [PubMed] [Google Scholar]
  11. John R. A., Fasella P. The reaction of L-serine O-sulfate with aspartate aminotransferase. Biochemistry. 1969 Nov;8(11):4477–4482. doi: 10.1021/bi00839a038. [DOI] [PubMed] [Google Scholar]
  12. KARMEN A. A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum. J Clin Invest. 1955 Jan;34(1):131–133. [PubMed] [Google Scholar]
  13. Lai C. Y., Chen C., Horecker B. L. Primary structure of two COOH-terminal hexapeptides from rabbit muscle aldolase: a difference in the structure of the alpha and beta subunits. Biochem Biophys Res Commun. 1970 Jul 27;40(2):461–468. doi: 10.1016/0006-291x(70)91031-4. [DOI] [PubMed] [Google Scholar]
  14. Marino G., De Rosa M., Buonocore V., Scardi V. Characterization by isoelectric focusing of pig heart aspartate aminotransferase. FEBS Lett. 1969 Dec 30;5(5):347–350. doi: 10.1016/0014-5793(69)80354-6. [DOI] [PubMed] [Google Scholar]
  15. Marino G., Paternó M., De Rosa M. Multiple forms of aspartate aminotransferase. The formation of psi-AAT. FEBS Lett. 1972 Mar;21(1):53–55. doi: 10.1016/0014-5793(72)80161-3. [DOI] [PubMed] [Google Scholar]
  16. Martinez-Carrion M., Turano C., Chiancone E., Bossa F., Giartosio A., Riva F., Fasella P. Isolation and characterization of multiple forms of glutamate-asparate aminotransferase from pig heart. J Biol Chem. 1967 May 25;242(10):2397–2409. [PubMed] [Google Scholar]
  17. Midelfort C. F., Mehler A. H. Deamidation in vivo of an asparagine residue of rabbit muscle aldolase. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1816–1819. doi: 10.1073/pnas.69.7.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morino Y., Watanabe T. Primary structure of pyridoxal phosphate binding site in the mitochondrial and extramitochondrial aspartate aminotransferases from pig heart muscle. Chymotryptic peptides. Biochemistry. 1969 Aug;8(8):3412–3417. doi: 10.1021/bi00836a041. [DOI] [PubMed] [Google Scholar]
  19. Ovchinnikov Y. A., Egorov C. A., Aldanova N. A., Feigina M. Y., Lipkin V. M., Abdulaev N. G., Grishin E. V., Kiselev A. P., Modyanov N. N., Braunstein A. E. The complete amino acid sequence of cytoplasmic aspartate aminotransferase from pig heart. FEBS Lett. 1973 Jan 1;29(1):31–34. doi: 10.1016/0014-5793(73)80008-0. [DOI] [PubMed] [Google Scholar]
  20. Palmer W. G., Papaconstantinou J. Aging of alpha-crystallins during development of the lens. Proc Natl Acad Sci U S A. 1969 Sep;64(1):404–410. doi: 10.1073/pnas.64.1.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robinson A. B., McKerrow J. H., Cary P. Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. Proc Natl Acad Sci U S A. 1970 Jul;66(3):753–757. doi: 10.1073/pnas.66.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tudball N. The metabolism of potassium l-serine O[S]-sulphate in the rat. Biochem J. 1962 Dec;85(3):456–460. doi: 10.1042/bj0850456. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES